Better Backtracking Support for Programmers (www.cs.cmu.edu/~azurite/)

institute for Carnegie
YogngSeokYoon (youngseok@cs.cmu.edu) - COFTWARE w Mellon

Advised by Brad Myers (bam@cs.cmu.edu) RESEARCH University

WHAT it is

= — e Java - HelloSwing/sr lh"Wg/M nFrame java - Eclipse Platform - oIEN|

AzURITE: A Selective Undo Tool for Code Editors A T —
Adding Zest to Undoing and Restoring Improves Textual Exploration S
Programmers need to backtrack often, yet there is only limited support I 1
for backtracking besides the conventional undo command and version control. .

AZURITE is an Eclipse plug-in that allows programmers to selectively undo fine-grained code

changes made in the code editor. With AzZURITE, programmers can easily perform backtracking

tasks, such as reverting some code to an earlier state, and restoring a block of code that was

deleted a while ago. - N

) . . . Backtracking: Going back to the way things were previously,
AZURITE can be used even when the desired code is not in the undo stack or the version for example by undoing some or all operations

control re pOSitO ry. Selective Undo: Undoing only the selected changes while

\keeping the other changes unaffected

Y,
o [ J o o o [ J o [ [ [ [ ]
‘Tlmelme Visualization & Code History Diff View Interactive Selective Undo Dialog
() Code Histary Diff 532 = g S Azurite - Interactive Selective Undo “
e T Interactive Selective Undo
Drawingkditor java:37-30 Revert p?w N;:t The preview will be updated as you select/deselect rectangles from the timeline.
[5-4 70] Feb 28, 2013 10:2%:49 AM (id:11113) [70] Current Version
public DrawingEditor () { 1 public DrawingEditor () { ﬁ Changes to be performed L o9p
[ 2 int width = 800; — = int width = 1000; b E ExampleFrame java: line 2 A
- int height = &00; : int height = &00; ExampleFramejava: lines 3-5
: h ExampleFrame java: lines 26-29 v
£ > £ >
ExampleFrame java | & & BB
' Problems @ Javadoc [2, Declaration El Console (f) Timeline View 53 @i keesxs ¢ |5 =0 Current Source Preview of Selective Undo Result
4 } Zoivate JPanel createButtons() { ~
25 27  JPanel buttonPanel = new JPanel():;
DrawingEditor java 2 private JPanel createButtons() { 2 B
- 27 JPanel buttonPanel = new JPanel () ; 29 buttonPanel.setLayout (new GridBagLayout()):
Textjava 2 30 GridBagConstraints ¢ = new GridBagConstraints():
10-23 AM 10-48 AM 10-49 AM 10:49 AM 10-51 AM 10-57 AM — 29 buttonPanel . zetLayout (new BoxLawyout | 31 c.fill = GridBagConstraints.HORTZONTAL;
0272812013 02/28/2013 0272812013 0212812013 02/28/2013 0272812013 02/28/2013 e R N - z'gigi L
1 e
33 —[E? JButton buttonl = new JButton ("Buttonm 1™):;
. . . ) ] . . . . . . . . 34 ' keep this code unchanged 36 JButton buttonZ = new Jbutton ("Button 2"):;
The timeline visualization (bottom) is the basic Ul for interacting with the code change history. The history is s5” | P : R ("Button 27) -7 JButton button3 = new JButton("Button 3");
. . . . . . 36 JButton buttond = new Jiutton("Button 3™); 38
displayed in a two-dimensional space, and each rectangle represents an edit performed in the past. Whenever 7 52 buttonPanel.add (BREEeRL) S) ;
a new change is made (even by undo), the corresponding rectangle appears at the right end, so that change vy i o [ [
history is never lost. Users can select one or more rectangles in the timeline and invoke “selective undo”. - puttonPanel.add (buttens) o R
return buttonPanel;
Users can select an arbitrary region of code and launch the code history diff view (top) to see how the selected S “ y
code has changed over time, and can revert to one of the previous versions. : ’ < ’
OK Cancel
o
H |St0ry SearCh The Interactive selective undo dialog of AzURITE. The left panel shows the current code, and the
AzURITE provides various ways to search through the history. The goal is to enable users to express whatever right panel shows the preview of the selective undo result. The user can also modify the outcome
they remember about the previous edits or situations that they want to select in the history. by marking some code in the left panel, and telling AzuriTE to “keep the code unchanged”.
= History Search n JButton button? = new JButton ("B
JButton button3 = new JButton ("B o d d
searh ot [GidBagLayo | Behind the Scenes: Selective Undo Mechanism
oeation cce | History search
catio pe Session scope . . .
Ol ® Al sessions can even search * Keeps track of all the fine-grained code changes
(@) Selected code () Latest session f or text w hl C h I S 4.4
options ot in the current ¢s|  return buctonPanel; * Maintains the correct locations of the previous edits in the current state
[ ] Case sensitive . .
Users can select an arbitrary region of code : :
code any more y region of * Detects conflicts among the edits and asks the user what she really
- - and “select corresponding rectangles” . . .
‘ wants, in case those conflicts cannot be automatically resolved
Highlights the time interval Example:
when the given text existed in the code My Timeline View 52 [ =) 60 pie: R1 R2
: - “myFontSize” > “myRectangleSize” » “myRegionArea”
b S S ;7 - o W
; Highlights all the edits performed on the What should be the result of selectively undoing onIy R1?
04:38 PM 04:38 PM 04:38 PM 04:39 PM 04:40 PM . . . . . .
selected region myFontgionArea? myFontSize? Or do nothing and keep it myRegionArea?

WHAT we expect

* Programmers will be able to perform their daily backtracking tasks more easily
* Programmers will be more comfortable exploring, because they know they can revert incorrect changes at any time

Relevant Publications

Yoon, Y., Myers, B., and Koo, S. (2013) “Visualization of Fine-Grained Code Change History,” IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2013). Presentation on Wednesday
Yoon, Y. and Myers, B. (2012). “An Exploratory Study of Backtracking Strategies Used by Developers,” International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2012).




