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WHAT it is
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AzURITE: A Selective Undo Tool for Code Editors A T —
Adding Zest to Undoing and Restoring Improves Textual Exploration S
Programmers need to backtrack often, yet there is only limited support I 1
for backtracking besides the conventional undo command and version control. .

AZURITE is an Eclipse plug-in that allows programmers to selectively undo fine-grained code

changes made in the code editor. With AzZURITE, programmers can easily perform backtracking

tasks, such as reverting some code to an earlier state, and restoring a block of code that was

deleted a while ago. - N

) . . . Backtracking: Going back to the way things were previously,
AZURITE can be used even when the desired code is not in the undo stack or the version for example by undoing some or all operations

control re pOSitO ry. Selective Undo: Undoing only the selected changes while

\keeping the other changes unaffected
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WHAT we expect

* Programmers will be able to perform their daily backtracking tasks more easily
* Programmers will be more comfortable exploring, because they know they can revert incorrect changes at any time
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