
Semantic Zooming of Code Change History

YoungSeok Yoon

Institute for Software Research

Carnegie Mellon University

Pittsburgh, PA 15213, USA

youngseok@cs.cmu.edu

Brad A. Myers

Human-Computer Interaction Institute

Carnegie Mellon University

Pittsburgh, PA 15213, USA

bam@cs.cmu.edu

Abstract—Previously, we presented our technique for visualiz-

ing fine-grained code changes in a timeline view, designed to facil-

itate reviewing and interacting with the code change history. Dur-

ing user evaluations, it became evident that users often wanted to

see the code changes at a higher level of abstraction. Therefore, we

developed a novel approach to automatically summarize fine-

grained code changes into more conceptual, higher-level changes

in real time. Our system provides four collapse levels, which are

integrated with the timeline via semantic zooming: raw level (no

collapsing), statement level, method level, and type level. Compared

to the raw level, the number of code changes shown in the timeline

at each level is reduced by 55%, 77%, and 83%, respectively. This

implies that the semantic zooming would help users better under-

stand and interact with the history by minimizing the potential in-

formation overload.

Keywords—semantic zooming; edit collapsing; program compre-

hension; software visualization; timeline visualization; Azurite

I. INTRODUCTION

In our previous work, we presented a timeline visualization
of the fine-grained code change history, where all the changes
are represented as color-coded rectangles in a two-dimensional
space (see Fig. 1a) [1]. Not only can users see the change history
from the timeline, but they can also select one or more of the
changes and invoke useful editor commands such as selective
undo, which undoes only the selected changes without affecting
the following changes in the history. After implementing these
features in an Eclipse plug-in called AZURITE (Adding Zest to
Undoing and Restoring Improves Textual Exploration), we
conducted a controlled lab study which showed that the timeline
is usable and programmers can perform their backtracking tasks
twice as fast compared to when not using AZURITE [2].

The timeline can be zoomed in and out. However, in earlier
versions of the timeline, it was difficult to see the bigger picture
of the history from the timeline, even when it was significantly
zoomed out, because the individual edits were still too fine-
grained. During our evaluation studies, users mentioned that
they often wanted to see the code changes at a higher-level of
abstraction, such as the level of adding a field, editing an existing
method, and so on. Therefore, we added a semantic zooming
feature to the timeline, which is the main topic of this paper. The
timeline dynamically adjusts the presented level of detail,
depending on the current horizontal zoom scale. To provide this
semantic zooming feature, we devised a real-time edit collapsing
algorithm, which takes fine-grained code changes as input and
produces more conceptual and abstract level of code changes.

There are existing tools that summarize the code changes
when two snapshots of code – often from the version control
system – are given (e.g., [3, 4]). However, these techniques use
a top-down approach: they extract conceptual edits from the
complete snapshots. In contrast, AZURITE uses a bottom-up
approach: it collapses and summarizes multiple, fine-grained
edit operations into a more meaningful, conceptual edit in real
time, as the user edits the code. Our algorithm is capable of
handling the stream of edits in an efficient, incremental manner.

II. EXAMPLE

Imagine that a programmer wants to write a factorial number
calculating program. For example, she might implement the
factorial calculator by taking the following steps in order:

(a) Write factorial method using a for loop (Fig. 2a)

(b) Test the function with a constant value (Fig. 2b)
(c) Change the factorial method to use recursion (Fig. 2c)

(d) Modify the main method to get user input (Fig. 2d)

(a)
Raw
Level

(b)
State-
ment
Level

(c)
Method

Level

(d)
Type
Level

Fig. 1. The timeline view after completing the example coding task described
in Fig. 2, shown at different levels of detail but the same zoom level. The blue

vertical lines were added for the purpose of explanation, and are not shown in

the actual timeline. The numbers in the square brackets indicate how many rec-
tangles are in each section at the raw level.

Fig. 1a shows the state of the timeline after completing all of
these steps. The timeline is partitioned into four sections, each
corresponding to a programming step described above. The blue
vertical lines are not actually shown in the timeline but were
added on the screenshot for the purpose of explanation.

It can be seen that there are relatively many rectangles shown
in the timeline, even for the seemingly simple programming
steps. With the real-time edit collapsing algorithm, the same
code edit history can be displayed more abstractly. Fig. 1 shows
how the example script would be displayed at different collapse
levels but at the same zoom level. AZURITE’s timeline supports
a total of four collapse levels: raw level, statement level, method
level, and type level, listed from the lowest to the most abstract.

III. THE FOUR COLLAPSE LEVELS

A. Raw Level (No Collapsing)

The raw level (Fig. 1a) shows the fine-grained edits as they
arrive, without any collapsing. This level was used during the
evaluation studies of AZURITE [2].

B. Statement Level

The statement level (Fig. 1b) is now used as the default in
the timeline. The goal of constructing the statement level is to
collapse consecutive edit operations that belong to the same
statement. This is achieved by an empirically developed ap-
proach. Whenever an edit introduces syntax errors to the code,
the collapse logic waits until those errors are removed by the in-
coming edits and collapses them together, which would typically
happen when a semicolon is typed at the end of a statement. Us-
ing this rule, the individual collapsed edits become much more
comprehensible, and they typically represent a single statement
change, variable addition, empty method stub addition, etc.

C. Method Level

The main idea of the method level (Fig. 1c) is to collapse all
the consecutive edits made in the same method into a single edit.
The method level is useful for discriminating the conceptual
units of code edits, assuming that programmers divide the code
logic into relatively small methods. For example, in Fig. 1c, each
step of the example factorial programming matches a single rec-
tangle in the timeline, because the programmer was alternating
between the factorial method and the main method. At the

method level, she could easily backtrack by selecting the
changes that modified the factorial method to use recursion

with a single mouse click, and then invoking selective undo.

D. Type Level

The highest collapse level is the type level (Fig. 1d). Similar
to the method level, the main idea is to collapse all the
consecutive edits in the same type into a single edit. The reason
for providing type level is to make it easier to review or interact
with the code edit history when the programmer is working with
nested types, or multiple types simultaneously. A great example
of such situations is when the programmer is using the State or
Strategy design patterns [5], which are often implemented as
nested classes in Java.

IV. COLLAPSING ALGORITHM

A. Overall Collapse Mechanism

The collapsing algorithm works in each of the collapse levels
separately. The key idea of this collapsing algorithm is to keep a
list of pending edits (pending list, hereafter) for each level. The
edit operations in the pending list have already been determined
to be collapsed together at that level, but are still pending in that
the next incoming edit(s) may also be collapsed with them.

Once a new edit operation is added to the history buffer, the
edit operation is first considered by the statement level collapser.
There can be three different outcomes. (1) If the current pending
list is empty, then the incoming edit is added to the pending list.
When there are existing pending changes, the statement level
collapser runs the collapse test with the rules described in
Section III.B. (2) If the edit should be collapsed, then it is added
to the end of the pending list. (3) If the edit should not be
collapsed, then all the currently pending edits are finally marked
as collapsed, the pending list is emptied, and the new incoming
edit is added to the now empty pending list. When this happens,
the edits that were just collapsed are considered by the next level
(the method level, in this case) collapser as the new incoming
edits. The same process is followed by the method level
collapser, with its own collapse test, and the edits collapsed at
the method level are then considered by the type level.

The collapsing algorithm had to remain compatible with the
selective undo presented in [2], which required the following
rules. First, collapsing is not allowed to reorder edits. Second,
edits that are collapsed at one level cannot be split at a higher
level. Finally, edits are never collapsed across user-defined tags
or run/save events, since prior work shows that these events
serve as explicit or implicit checkpoints for programmers [2].

B. Collapse Test for the Method Level and Type Level

At the method (or type) level, the basic collapse rule is to
collapse the consecutive edits made in the same method or field
(or type). In order to run this collapse test successfully, the col-
lapser must first extract some change details of the edits. Most
importantly, the change kind is determined, among the list of 12
kinds summarized in Table I. The change details also denote
whether the edit range is bound to a certain method or class.

The change detail extraction process is illustrated in Fig. 3.
To extract change details of a set of code edits, the system takes
the two snapshots, before and after the edits, and the interim edit

public static void main(String[] args){

}

public static int factorial(int n) {

 int result = 1;

 for (int i = 2; i <= n; ++i) {

 result *= i;

 }

 return result;

}

 (a)

public static void main(String[] args){

 System.out.println(factorial(5));

}

public static int factorial(int n) {

 int result = 1;

 for (int i = 2; i <= n; ++i) {

 result *= i;

 }

 return result;

} (b)

public static void main(String[] args){

 System.out.println(factorial(5));

}

public static int factorial(int n) {

 if (n <= 1) { return 1; }

 return n * factorial(n - 1);

}

 (c)

public static void main(String[] args){

 Scanner in = new Scanner(System.in);

 int n = in.nextInt();

 System.out.println(factorial(n));

 in.close();

}

public static int factorial(int n) {

 if (n <= 1) { return 1; }

 return n * factorial(n - 1);

} (d)

Fig. 2. The code changes for the factorial example.

operations as input. Because there are two sets of edits in con-
sideration, pending edits and the incoming edit, the collapser
needs to analyze three versions of code snapshots. Each of these
snapshots are first parsed into an abstract syntax tree. Then, the
pending change details and the incoming change details are ex-
tracted from the three snapshots and the edits themselves.

Once the change kinds are determined, the collapser uses the
collapse test matrix to see if their change kinds are compatible
and can be combined together (Table II & III). The content of
each cell indicates the resulting change kind after collapsing the
pending changes and the incoming change. For example, at the
method level (Table II), an AM change followed by a CM
change on the same method results in a collapsed AM change.
The same logic applies to the fields. At the type level, more kinds
of changes can be collapsed than at the method level. For exam-
ple, an AM change followed by another AM change can be col-
lapsed at the type level, provided that they were added to the
same type. The gray cells indicate that they are not collapsible.

V. INTEGRATION WITH THE TIMELINE VISUALIZATION

The collapsed edits can be displayed in the timeline, as
shown in Fig. 1. The group rectangles are color-coded according
to their change kind. All the Adds are colored as yellow-green,
all the Changes as sky-blue, and all the Deletes as pink, which
corresponds to the colors of the member edits at the raw level.
The other kinds of changes (NCC, UNK) are shown as grey. One
or more group rectangles can be selected by mouse as they could
at the raw level, and the context menu items work exactly the
same way as they would when all the member rectangles are se-
lected at the raw level.

A. Semantic Zooming

The timeline supports se-
mantic zooming using the edit
collapsing mechanism (Fig. 4).
By default, the statement level is
used, and the level is automati-
cally adjusted as the zoom scale
changes. Users can also manually change the level by clicking
the collapse level controller (the “S” in Fig. 4) and then selecting
the desired level, without changing the zoom scale. The first let-
ter of the current level is always displayed as the button label.

B. Width and Height of a Group Rectangle

The width of a group rectangle is calculated by taking the
sum of all the widths of the member edits that they would have
at the raw level. Thus, the width of a group rectangle indicates
the actual time the user spent to make the group edit, excluding
all the idle times in-between. The height of a group rectangle
indicates the size of all the member edits combined relative to
the entire file in terms of number of characters, and the “Y” po-
sition represents the relative location of the edit in the file.

C. Summarizing the Edits

In the tooltip of a group rectan-
gle, a one-line summary of the edit
is displayed at the top, using the
change details obtained during the
collapse test. The summary is fol-
lowed by the actual code changes.
In Fig. 5, the summary is the part
saying “Changed method ‘facto-

rial’”. As shown in this example,
the name of the relevant code ele-
ment (e.g., ‘factorial’) is also displayed.

Fig. 3. Illustration of the change detail extraction process.

TABLE I. KINDS OF CODE EDITS

Kind of Edit Abbr. Description

Add Field AF Adding a new field to a class
Change Field CF Modifying an existing field
Delete Field DF Deleting an existing field
Add Method AM Adding a new method
Change Method CM Changing an existing method
Delete Method DM Deleting an existing method
Add Type AT Adding a new type declaration
Change Type CT Changing an existing type declaration
Delete Type DT Deleting an existing type declaration
Change Import
Statement

CIS Adding, changing, or deleting one or more
import statements

Non-code Change NCC Editing without altering the AST structure
Unknown UNK All the other changes

TABLE II. COLLAPSE TEST MATRIX – METHOD LEVEL

 Incoming Change

AF CF DF AM CM DM AT CT DT CIS NCC UNK

P
e

n
d

in
g

C
h

an
ge

s

AF AF NCC

CF CF DF

DF

AM AM NCC

CM CM DM

DM

AT

CT

DT

CIS CIS

NCC NCC

UNK

 TABLE III. COLLAPSE TEST MATRIX – TYPE LEVEL

 Incoming Change

AF CF DF AM CM DM AT CT DT CIS NCC UNK

P
e

n
d

in
g

C
h

an
ge

s

AF CT CT* CT* CT CT CT CT DT

CF CT CT* CT* CT CT CT CT DT

DF CT CT CT CT CT CT CT DT

AM CT CT CT CT CT* CT* CT DT

CM CT CT CT CT CT* CT* CT DT

DM CT CT CT CT CT CT CT DT

AT AT AT AT AT AT AT AT NCC

CT CT CT CT CT CT CT CT DT

DT

CIS CIS

NCC NCC

UNK

* or the value specified in the method level matrix,
if the changes are made on the same code element

Fig. 4. The horizontal zoom slider,

the collapse level controller button

(S), and the popup menu.

Fig. 5. A tooltip for a group rec-

tangle showing the human-reada-
ble summary of the change.

VI. EVALUATION

A. Log Analysis

To evaluate the performance of the collapsing mechanism, it
was tested with the entire code editing transcripts obtained from
the longitudinal study of programmers’ backtracking [6], which
contains 1,460 hours of detailed coding events including all the
editor commands and fine-grained code changes collected from
21 programmers. The edit collapsing component processed the
edits in the transcripts as if they were made in the code editor.

Table IV shows the number of edits in each collapse level.
There were a total of 282,195 edits at the raw level. On average,
the statement level collapser reduces the number from the raw
level by 55%. In turn, the number is reduced by 50% more at the
method level, and reduced by 26% more at the type level. This
implies that the collapsing mechanism would be useful in
minimizing the potential information overload by dramatically
reducing the number of rectangles displayed in the timeline.

B. Performance Analysis

We also measured the performance impact of the collapse
logic, using the same data set as in Table IV, using a PC running
Windows 8 with a 2.60 GHz CPU. Table V summarizes the
mean time it takes to run the collapse logic at each collapse level.
The statement level logic, which mainly tests if the current code
is parseable, takes about 7ms on average. The method and type
level logic, which requires more sophisticated change detail
extraction process as in Fig. 3, takes about 11~12ms.

From the data presented in Table IV, we can obtain the invo-
cation rates of the collapse logic at each level. The statement
level collapse logic is called every time when a new edit is made.
The method level logic is called 0.45 times, and the type level
logic is called 0.23 times per edit on average. Combining the in-
vocation rates with the measured time, the average time it takes
to run the collapse level per edit operation can be calculated as:

7.08ms × 1 + 11.29ms × 0.45 + 11.80ms × 0.23 = 14.87ms/op

This means that whenever a new edit is made, the collapsing
logic runs for 15ms on average, which we consider acceptable.

VII. LIMITATIONS AND FUTURE WORK

The edit collapsing mechanism described in this paper has a
number of limitations. First, the mechanism never reorders the
edits to make it compatible with our selective undo mechanism
[2], so the collapsing mechanism may not work well when the

programmer is jumping around multiple locations in code. In the
future, a history refactoring mechanism as in Historef [7, 8]
could be implemented to support edit collapsing more flexibly.

While the idea behind the collapsing mechanism is language
independent, our implementation is tied to Java. Also, the
collapsing mechanism only detects a few kinds of changes, and
we could add more kinds as in [9] in the future. In addition, the
visualization of the collapsed edits might be improved by visu-
alizing more information about the changes in the timeline.

The source code parsing part of the collapse test logic could
be improved by parsing only the changed area of code instead of
the entire file, for example by using island grammars [10].
Alternatively, the AST parser could be configured to resolve the
binding information to determine the connection between
different parts of code, which could be useful for edit collapsing.

There could be other types of collapse levels which are
orthogonal to the collapse levels that we presented. For instance,
when the user is using a task tracking system such as Mylyn [11],
all the edits made for the same task could be collapsed together.

VIII. RELATED WORK

The semantic zooming was inspired by previous work [12,
13], where multiple views are defined for different zoom levels,
and the appropriate view is automatically chosen based on the
current zoom level. The kinds of code changes in Table I are
similar to the categories of atomic code changes presented in [3],
with several differences. First, in their model, adding and
deleting changes are always for an empty element. In contrast,
in our model, an Add Method might represent an added method
with its own body as well. Another difference is that our
classification can represent Non-Code or Unknown changes. By
representing these additional cases, they can also be selected and
undone by the user. For example, an NCC code reformatting edit
could later be selectively undone.

Others have developed ways to extract high-level code
changes from two versions of code, using AST tree differencing
[14, 15]. One of the biggest challenges of AST differencing is
the problem of matching code elements between the two
versions, for example when renaming happens [16, 17]. We
solved this problem by taking the edit operations as input as well.

IX. CONCLUSION

We described our approach of semantic zooming of code
change history, which internally uses a real-time edit collapsing
algorithm, implemented in our tool AZURITE. We hope that users
would be able to review and/or interact with the code change
history more effectively by working at the right level of
abstraction. AZURITE is a publicly available plug-in for Eclipse
(http://www.cs.cmu.edu/~azurite/), and we invite your feedback.

ACKNOWLEDGMENTS

Funding for this research coms in part from the Korea
Foundation for Advanced Studies (KFAS) and in part from NSF
grants IIS-1116724 and IIS-1314356. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of
KFAS or the National Science Foundation.

TABLE IV. NUMBER OF EDIT OPERATIONS AT EACH LEVEL

 Raw Statement Method Type

Total # 282,195 127,683 63,984 47,384
Avg. #/hr 193/hr 88/hr 44/hr 32/hr
% RPLa 55% 50% 26%
% RRLb 55% 77% 83%

a. % Reduction from the Previous Level
b. % Reduction from the Raw Level

TABLE V. RUNNING TIME OF THE COLLAPSE LOGIC

Collapse Level Running Time

Statement Level 7.08 ms
Method Level 11.29 ms
Type Level 11.80 ms

REFERENCES

[1] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-Grained Code
Change History," Proc. IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC'13), 2013, pp. 119-126.

[2] Y. Yoon and B. A. Myers, "Supporting Selective Undo in a Code Editor,"
Proc. International Conference on Software Engineering (ICSE'15), 2015.

[3] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, "Chianti: A Tool
for Change Impact Analysis of Java Programs," Proc. ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'04), 2004, pp. 432-448.

[4] M. Kim and D. Notkin, "Discovering and Representing Systematic Code
Changes," Proc. International Conference on Software Engineering
(ICSE'09), 2009, pp. 309-319.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Pearson Education,
1994.

[6] Y. Yoon and B. A. Myers, "A Longitudinal Study of Programmers'
Backtracking," Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC'14), 2014, pp. 101-108.

[7] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and M. Saeki,
"Refactoring Edit History of Source Code," Proc. IEEE International
Conference on Software Maintenance (ICSM'12), 2012, pp. 617-620.

[8] S. Hayashi, D. Hoshino, J. Matsuda, M. Saeki, T. Omori, and K.
Maruyama, "Historef: A Tool for Edit History Refactoring," Proc. IEEE
International Conference on Software Analysis, Evolution, and
Reengineering (SANER'15), 2015.

[9] B. Fluri and H. C. Gall, "Classifying Change Types for Qualifying Change
Couplings," Proc. IEEE International Conference on Program
Comprehension (ICPC'06), 2006, pp. 35-45.

[10] L. Moonen, "Generating Robust Parsers Using Island Grammars," Proc.
Working Conference on Reverse Engineering (WCRE'01), 2001, pp. 13-
22.

[11] M. Kersten and G. C. Murphy, "Using Task Context to Improve
Programmer Productivity," Proc. ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE'06), 2006, pp.
1-11.

[12] K. Perlin and D. Fox, "Pad: An Alternative Approach to the Computer
Interface," Proc. Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH'93), 1993, pp. 57-64.

[13] J. I. Hong and J. A. Landay, "SATIN: A Toolkit for Informal Ink-Based
Applications," Proc. Annual ACM Symposium on User Interface
Software and Technology (UIST'00), 2000, pp. 63-72.

[14] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall, "Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction," IEEE
Transactions on Software Engineering, vol. 33, 2007, pp. 725-743.

[15] I. Neamtiu, J. S. Foster, and M. Hicks, "Understanding Source Code
Evolution Using Abstract Syntax Tree Matching," Proc. International
Workshop on Mining Software Repositories (MSR'05), 2005, pp. 1-5.

[16] S. Kim, P. Kai, and E. J. Whitehead, "When Functions Change Their
Names: Automatic Detection of Origin Relationships," Proc. Working
Conference on Reverse Engineering (WCRE'05), 2005, p. 10 pp.

[17] M. Kim and D. Notkin, "Program Element Matching for Multi-Version
Program Analyses," Proc. International Workshop on Mining Software
Repositories (MSR'06), 2006, pp. 58-64.

