
Better Backtracking Support for Programmers

YoungSeok Yoon

Institute for Software Research

Carnegie Mellon University

Pittsburgh, PA, USA

youngseok@cs.cmu.edu

Abstract—Programmers often need to backtrack while coding,

yet there is only limited support for backtracking in modern

programming tools. Our study results confirmed the prevalence

of backtracking and identified several problems programmers

face while backtracking. To mitigate these problems, we are

building an IDE plug-in aimed at providing better support for

backtracking by combining a selective undo mechanism, novel

visualizations, and code change history search features. We envi-

sion that this approach will help programmers perform back-

tracking tasks more easily.

Keywords—backtracking, selective undo, history search, inte-

grated development environments, software visualization

I. INTRODUCTION

When developing software, programmers often need to
backtrack while implementing or debugging a feature. There
are various reasons for backtracking. For example, when a
feature does not work as imagined, the programmer would
have to revert some of the newly made code changes and try
out something else. In addition, a programmer might
intentionally explore different options when there are
alternative solutions to a given problem or when learning an
unfamiliar API. Another example situation would be adding
print statements in multiple locations for debugging purposes
and then removing them after successfully fixing the bug.

However, modern programming environments provide only
limited support for backtracking. The linear undo command
used by most existing code editors can be used in some
backtracking situations. However, linear undo can only undo
the most recent changes, and loses the undone changes once the
programmer makes some new changes after invoking the undo
commands. Another option is to use a version control system
(VCS) to revert some code to a previous version, but this
approach relies on an assumption that the desired code is
already committed to the VCS, which may not be the case.
Moreover, neither of these approaches helps when there are
some wanted and unwanted code changes intermixed in the
recent history.

This paper gives an overview of my on-going research that
tries to address these problems with backtracking. Section II
briefly reviews the exploratory studies on backtracking, and
Section III describes the prototype tool called AZURITE. Then
the current limitations of our approach and our future work are
presented in Section IV.

II. EXPLORATORY STUDY

We performed an exploratory study of backtracking in
order to get insights on what kinds of backtracking situations
programmers face, what problems they have while
backtracking, and how they resolve the problems using existing
environments [1]. A lab study with 12 professional developers
revealed that programmers have difficulty in finding relevant
sections of code to backtrack. Also, programmers often
commented out code just in case it is needed later, but still they
lost some code fragments that turned out to be needed. Our
follow-up survey confirmed that most programmers reported
they need to backtrack in various situations.

III. APPROACH

The goal of this research is to build a better tool that helps
programmers to perform various backtracking tasks in more
natural ways. To achieve this goal, we are building a prototype
tool called AZURITE (www.cs.cmu.edu/~azurite/) as an Eclipse
plug-in. Our key insight is that many of these problems can be
solved by having a selective undo feature in the code editor.

A. Selective Undo Mechanism for Code Editors

Selective undo has been well studied for creation-oriented
graphical applications [2, 3], but it has not been used with
text/code editors due to the following challenges. First, unlike
graphical applications, text just has a stream of characters
without the notion of identifiable objects. Second, there are
many conflicts among the edit operations that can occur when
the region of a new edit overlaps the region of some earlier
performed edit.

We developed a selective undo algorithm for code editors
[4] which can handle these issues. The tool keeps track of the
segment (offset and length) information of individual fine-grain
edits and updates the information as necessary. It also detects
conflicts as they occur, to provide reasonable options when the
user tries to selectively undo an edit which has conflicts.
Another merit of our selective undo mechanism is that the user
can select multiple edits and undo them all at once. This is not
only convenient for the users, but also has a significant merit
over undoing one edit at a time, because the tool can always
perform undo correctly when the conflicting edits are being
undone together.

It is also important to provide natural user interfaces for
selective undo, which is a challenging task. Most existing
selective undo user interfaces for graphical applications present

http://www.cs.cmu.edu/~azurite/

a list of operations performed in the past so that users can
choose the right operation to be undone. In contrast, text
editing operations are often quite fine-grained so it is hard for
users to interpret the high level edit intent just by looking at the
individual edits. To address these issues, AZURITE provides the
following interfaces: a timeline visualization, a code history
diff view, and a history search dialog.

B. Timeline Visualization & Code History Diff View

Instead of having a textual list of edits, AZURITE provides a
timeline-based two dimensional visualization of the code edit
history. The horizontal axis represents time, and each row
represents each file being edited. Individual edits are
represented as color-coded rectangles, where the vertical loca-
tion in the row represents where in the file the edit happened.
Users can select those rectangles to invoke various editor
commands including selective undo.

Another interface is code history diff view. Users can select
an arbitrary region of code and launch this view to see the fine-
grained code change history of the selected region. Users can
move between different versions of this code, and even revert
the code to one of the previous versions, which can be
considered as a specialized form of selective undo [5].

C. History Search

Once the history gets larger, it would be more difficult for
users to find relevant edits to undo, which suggests that better
user interfaces are needed to mitigate this problem. One of the
observations from the previous lab study is that programmers
remember some characteristics of the code that they want to
backtrack. Examples of these characteristics include the
relevant code element names (e.g., variable name, class name),
location of the code, when the changes were made, etc. Along
this line, AZURITE provides a history search feature which
enables users to specify various options to search for code
changes in the history. History search would also reduce the
chance of having irresolvable conflicts, because the
conceptually related edits are likely to be selected together with
a history search query, and thus they would usually have
conflicts only among themselves, which AZURITE handles au-
tomatically.

Currently, the tool provides three search options, which can
be combined to form a more specific query. Users can search
for all edits performed:

 on a specific region of code

 during a time where a specific text existed in the code

 within the current editing session or any time.

The search results are displayed in the timeline, and the
user can further investigate the selection or invoke selective
undo on the corresponding rectangles.

IV. LIMITATIONS AND FUTURE WORK

Although we have already implemented some history
search options, we plan to implement more. The goal is to
provide a rich set of search options so that users can express
what they remember about the code changes that they want to
revert in a natural way. In order to do this, we should first

know about the things the users remember about the code
changes.

Since our tool has many user interfaces, it is likely that
there are many as yet undiscovered usability problems. We will
perform a series of usability evaluation studies to improve the
tool iteratively. Along the same lines, the actual effectiveness
of AZURITE has not yet been shown by formal user studies. We
are performing a field study with real users to see whether
AZURITE helps their actual daily development activities.

We have also been collecting programmers’ code editing
data at a fine-grained level. Currently, our data contain more
than 927 hours of coding activities collected from 9
programmers who did their own work while the logging plug-
in was running. These data are not yet fully analyzed. We plan
to investigate the backtracking incidents in this large dataset
and extract more insights which would eventually guide us to
improve our tool. Investigating how those backtracking tasks
could have been achieved if they had AZURITE is another
method of evaluation. In addition, there are many minor
questions that could potentially be answered by analyzing the
log data. For example, how many files should be shown at a
time in the timeline to make it the most useful? Would it be
enough to keep the current session’s history for most cases, or
is more past history needed in general? By finding answers to
these questions from the data, user interfaces could be provided
that are comfortable to use while minimizing the effort needed
for future lab user studies.

V. CONSLUSION

We believe that a usable selective undo tool integrated with
the code editor would help programmers perform their daily
backtracking tasks more easily. In addition, this would make
programmers more comfortable to explore, because they know
that they can revert incorrect changes at any time, which hope-
fully will, in turn, enable developers be more creative and pro-
ductive.

ACKNOWLEDGMENT

Funding for this research comes in part from the Korea
Foundation for Advanced Studies (KFAS) and in part from
NSF grant IIS-1116724. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of
KFAS or the National Science Foundation.

REFERENCES

[1] Y. Yoon and B. A. Myers, "An exploratory study of backtracking
strategies used by developers," Proc. International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE
2012), 2012, pp. 138-144.

[2] T. Berlage, "A selective undo mechanism for graphical user interfaces
based on command objects," ACM Transactions on Computer-Human
Interaction, vol. 1, 1994, pp. 269-294.

[3] B. A. Myers and D. S. Kosbie, "Reusable hierarchical command
objects," Proc. SIGCHI conference on Human factors in computing
systems: common ground (CHI 1996), 1996, pp. 260-267.

[4] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-Grained Code
Change History," accepted for publication at VL/HCC 2013, in press.

[5] R. Li and D. Li, "A regional undo mechanism for text editing," Proc.
International Workshop on Collaborative Editing Systems (IWCES
2003), 2003.

