
Visualization of Fine-Grained Code Change History

YoungSeok Yoon

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

youngseok@cs.cmu.edu

Brad A. Myers, Sebon Koo

Human-Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

bam@cs.cmu.edu, sebonk@andrew.cmu.edu

Abstract—Conventional version control systems save code

changes at each check-in. Recently, some development environ-

ments retain more fine-grain changes. However, providing tools

for developers to use those histories is not a trivial task, due to

the difficulties in visualizing the history. We present two visuali-

zations of fine-grained code change history, which actively inter-

act with the code editor: a timeline visualization, and a code his-

tory diff view. Our timeline and filtering options allow developers

to navigate through the history and easily focus on the infor-

mation they need. The code history diff view shows the history of

any particular code fragment, allowing developers to move

through the history simply by dragging the marker back and

forth through the timeline to instantly see the code that was in the

snippet at any point in the past. We augment the usefulness of

these visualizations with richer editor commands including selec-

tive undo and search, which are all implemented in an Eclipse

plug-in called “AZURITE”. AZURITE helps developers with answer-

ing common questions developers ask about the code change

history that have been identified by prior research. In addition,

many of users’ backtracking tasks can be achieved using

AZURITE, which would be tedious or error-prone otherwise.

Keywords—program comprehension; software visualization; in-

tegrated development environments; selective undo

I. INTRODUCTION

Software developers use version control systems (VCSs)
such as Subversion and Git to keep the history of how the
source code evolved over time. Developers manually commit
each changeset consisting of a set of changes along with hu-
man-readable comments describing the changes. Having these
software evolution histories is useful for many purposes. First,
developers can better understand the source code by looking at
the evolution histories. This can be useful when reviewing code
changes or before modifying any existing codebase written by
others. Second, developers can execute many commands on
each changeset (or revision) of the software code. For instance,
when some recent changes are discovered to be wrong, then the
entire project can be easily reverted to one of the previous revi-
sions that was correctly working. Another example operation
would be merging a changeset made in one branch into another
branch, for example from a developer experimenting with dif-
ferent implementations or from different developers working
independently. Finally, the histories are not only useful for the
developers, but are also useful for the researchers who are in-
terested in how software is developed over time. Mining soft-
ware repositories [1] is known to be an effective research
methodology and there is even a whole conference on this topic.

In recent years, there has been a growing belief among
software engineering researchers that automatically recorded
finer-grained change histories are needed in order to avoid the
significant information loss between two consecutive snapshots

inherent in VCSs [2, 3, 4, 5, 6, 7]. The basic idea is to keep all
the small low-level changes such as individual insertion, dele-
tion, and replacement of text. Recently, this approach has been
shown to be feasible [4, 5, 8], and there have been attempts to
make use of these fine-grained histories in two different ways.

The first way is to help developers understand the code
evolution by recording and replaying fine-grained changes in
the integrated development environments (IDEs) [6, 9, 10].
One experiment showed that developers can answer software
evolution questions more quickly and correctly when provided
with a replay tool. The second way is to analyze the history
data for research purposes. This approach has also been suc-
cessfully used to identify programmers’ common coding prac-
tices such as backtracking [11] and refactoring [12].

However, the potential applications of the fine-grained his-
tories have not been fully explored. There could be some cases
where the history can be useful for the developers, while VCSs
cannot provide the same benefits. For example, we are devel-
oping a selective undo [13] feature for code editors which al-
lows developers to undo a change made a while ago, without
affecting the later changes that are irrelevant to the change
being undone. There are many cases where VCSs cannot help
with this kind of selective revert, which we call “backtracking”.
For example, the desired code may not be in the repository at
all. The revert feature of VCSs could be inadequate even when
the code is in the repository, when wanted and unwanted code
are intermixed in the current code as often happens [11, 14].

Unfortunately, it is not a trivial task to provide useful tools
for developers using these fine-grained code change histories.
The main problem is information overload; developers make a
huge number of low-level changes while editing source code.
Without proper visualization and filtering mechanisms, it is
hard for developers to focus on the information they need. This
becomes a basic requirement for any richer editing commands,
such as various forms of searching, undo and redo, which
would be executed on the past changes.

Various factors make it difficult to visualize the change his-
tory especially in the code editing context. For example, many
existing selective undo user interfaces for graphical editors
display a list of all of the low-level editing operations along
with human-readable descriptions of the individual operations
[13, 15, 16]. However, text editing operations are often so fine-
grained and numerous that it is hard for the users to interpret
the high level editing intent just by looking at the individual
edits. In addition, graphical applications can use a thumbnail to
represent a snapshot of the document at a certain point of time,
which makes it easier to present the edit history to the user [17,
18, 19, 20, 21]. In contrast, a thumbnail of a large text file does
not give much information to the users.

Fig. 2. An example tooltip. The detailed timestamp is shown at the top. The

deleted text is shown between the lines with minus signs (-), and the inserted

text is shown between plus signs (+). The blue rectangle under the cursor
represents an edit near the top of the file that replaced a hard-coded constant

“800” with a variable named “width”.

This paper presents two user interfaces specifically de-
signed to visualize fine-grained code change history while
overcoming the problems described above: a timeline visualiza-
tion, and a code history diff view. The timeline visualization
(see Fig. 1) displays the changes in a two-dimensional space
controlled by various filtering mechanisms. New edits in the
code are displayed as they are made, and users can also load
past editing histories. One or more edit operations can be se-
lected in the timeline to execute various editor commands on
those selected operations, such as highlighting the relevant
code and selective undo of only the selected operations.

The code history diff view (see Fig. 3) shows the history of
a particular code fragment. An arbitrary area of code can be
selected and the code history diff view can be launched for that
specific section of code. Developers can then move through the
history back and forth by dragging the marker in the timeline to
see the evolution of that fragment.

These two visualizations closely interact with each other
and also with the code editor. The flexibility of these two visu-
alizations make it easy to answer the history related questions
frequently asked by developers [22, 23]. Moreover, the editor
commands built on top of these visualizations make it possible
to help developers achieve certain tasks, which could not be
done with any existing tools. In order to show the feasibility of
these visualizations, we implemented them in an Eclipse plug-
in called AZURITE

1
, as described next.

II. TIMELINE VISUALIZATION

A. Basic Features

The timeline visualization of AZURITE is shown in Fig. 1.
Unlike most other tools that display the edit history in a linear
list [6, 9], here the edit history is displayed in a two-
dimensional space. The horizontal axis represents time, and the
time keys are shown along the x-axis. Each row contains the
edit history of one file.

Individual changes are represented with rectangles. Each
rectangle is color-coded according to the type of edit: Inserts
are green, Deletes are red, and Replacements are blue. The tool
captures more editor commands, but we only display these
three primitive edit types because all editing operations that

1
 AZURITE is a blue mineral, and here stands for Adding Zest to Undoing and

Restoring Improves Textual Exploration. The plug-in and detailed information

about AZURITE can be found at: http://www.cs.cmu.edu/~azurite/.

change the code result in one of these three types, and we
wanted to minimize the information overload as much as pos-
sible. Other filtering options could be trivially added, for ex-
ample to show only the deletes. The horizontal location and
width of a rectangle represents the time and duration of the edit
performed. The vertical location and height of a rectangle with-
in the row represents the relative location of the edit within the
file. There is a minimum width and height of a rectangle so that
users can easily identify and select even small edits. The time-
line is arbitrarily zoomable and scrollable both horizontally and
vertically, so that the user can see all the files and the entire
history of all edits, or the specific details of one editing session.

Whenever the user makes a new edit to a file, a new rectan-
gle immediately appears at the right end of the timeline view
representing that edit. The most recently edited file moves to
the top row automatically, which enables the user to quickly
recognize the most recently edited files by reading the file
names from top to bottom. Currently, the rows cannot be reor-
dered manually, but a drag & drop interface could be added.

Note that unlike the undo stack, the edit history contains all
the edits that have ever been performed, in chronological order.
Any undo operations are added on to the end of the timeline,
just like any other operation, and the operation which was un-
done is still kept in the visualization. This makes it possible to
see all previous operations and states of the files.

More detailed information of each edit is shown as a tooltip
which is shown on mouse hover. The tooltip (see Fig. 2) con-
tains the exact time when the edit has made, and the text that
was inserted and/or deleted by that edit.

B. Layout Modes
AZURITE’s timeline visualization supports two layout op-

tions: real-time mode and compact mode. In real-time mode,

Fig. 1. Timeline Visualization of AZURITE. Each row contains the history of a single file. Each rectangle represents a single edit operation. Rectangles are color-

coded by the type of edit (Inserts=green, Deletes=red, Replacements=blue). The horizontal axis represents time, which is currently not linear because the timeline

is in compact mode. The vertical location of each rectangle within a row indicates the relative location in the file where the edit was performed. The vertical gray
lines (the first two lines from the left) divide sessions, and the vertical yellow line (the first from the right) indicates “now”. The view can be arbitrarily zoomed

and scrolled, both horizontally and vertically, and the rectangles can be selected with the mouse, which highlights them in yellow.

the rectangles are horizontally located proportionally to the
actual time that they were made. This is a trivial option in
terms of implementation, but it turned out there is a significant
problem with this approach. There are many gaps between the
changes because developers use only about 20% of their time
actually editing code [24], which makes it difficult to navigate
through the edit history in the timeline.

To resolve this problem, AZURITE provides a compact
mode, which is used by default. In compact mode, all the hori-
zontal gaps between rectangles are removed so that times when
the user is not editing are not displayed, and all the edits are
shown contiguously. This mode is better for handling longer
histories, since it dramatically reduces the need for horizontal
scrolling. Fig. 1 shows the compact mode.

In contrast, real-time mode could be better for short histo-
ries because users can better reconstruct their previous working
context, for example by seeing the size of the gaps and the
grouping of edits temporally. Users can switch between the two
modes at any time.

C. Selecting Changes and Invoking Commands

The user can click on a rectangle to select it, or drag to se-
lect multiple rectangles at once. Additional rectangles can be
toggled in the selection using the control key. The current se-
lection is highlighted with yellow outlines (see Fig. 1). Note
that, unlike regular text or code editors, disconnected sections
of the timeline can be selected. Once some of the operations are
selected, the user can invoke a popup context menu.

The first command in the menu is “selective undo” which
undoes only the selected changes while keeping the other
changes unaffected. Note that AZURITE allows rectangles to be
selected across multiple files and undone, which is a significant
advantage over conventional undo which only works on a sin-
gle file. Another command is “undo everything after the selec-
tion,” a convenient way to revert the whole file at once. Note
that this “revert” is put into the timeline like any other opera-
tion, so users can easily change their mind and undo it.

Other commands vary depending on the number of selected
edits. When there is exactly one selected operation, users can
choose “jump to this location” to open the relevant file in the
code editor and move the cursor to the location where the oper-
ation was performed. The same command can be invoked by
double-clicking a rectangle in the timeline. To perform this
operation correctly, AZURITE must take into account any later-
performed operations that might have changed the code and its
location in the file, as explained below (Sec. IV.A).

When multiple operations are selected, users can choose
“show all files edited together,” which shows all the files that
were edited in the same timeframe when the selected opera-
tions were performed. In the future, we will investigate to what
extent it makes sense to provide a “jump to locations” com-
mand to allow users to focus the code editors on multiple
blocks of code at once, since this is not directly supported by
any code editor today. We will also add further commands to
this menu, as described below in Sec. VI.

D. Storing and Viewing the History of Past Sessions

AZURITE keeps the history separately for each session,
where a session starts with the IDE being opened and ends
when the IDE is exited. By default, the timeline displays the
history of the current session only. Users can manually invoke
the “Read previous history” command to load the code change
history of previous sessions when needed. At the right-most

edge of each session, a gray vertical line is shown to indicate
the boundary between the two adjacent sessions. A vertical line
at the right edge of the current session indicates “now”, which
is drawn in yellow to be distinguishable from other sessions.

E. Filtering and Searching Changes

In the timeline, users can control which files are shown us-
ing various filtering options, which can be invoked by right-
clicking one of the file labels at the left of the timeline. Cur-
rently, AZURITE provides four file filtering options: (1) show
only this file, (2) show all files in the same project, (3) show all
files edited together, and (4) show all files in the history.

Users can also search the edit history to find the infor-
mation they need. The history search feature is invoked from
the code editor menus, and the search results are shown in the
timeline as selected operations. Currently, AZURITE provides
three history search options. First, users can search for all edits
performed on a selected area of code, which we found to be the
most desired operation [11]. The scope of this search is not
limited to structural code elements such as a class or a method;
the search can be performed on an arbitrary region of code that
the user selects. This search is also used by the code history
diff view (see Sec. III). Second, users can search for all edits
that happened during a time interval where a certain code (or
text) existed. Note that, in this case, the searched-for text does
not necessarily have to exist now in the code, so this is not the
same as searching the current code base for the text. It is also
not enough to search for the text within the stored deleted /
inserted text for each operation, because the text being searched
for may be partially in the edit and partially in the code (for
example, searching for DrawRectangle when the code now

says PaintRectangle and an operation is “replace Draw with

Paint”). To make this search possible, we used our selective
undo feature to calculate the snapshot at each point and check
if the snapshot contains the desired code or not. Finally, users
can limit the search scope to the current session or include the
past sessions. In the latter case, only the history of past sessions
that are already loaded are considered.

F. Implementation

AZURITE’s timeline visualization is written in HTML-5 /
CSS / JavaScript, and it communicates with the backend
through the embedded browser interface of Eclipse. We used
this approach for one of our previous tools [25] and it has sev-
eral merits over using IDE-specific APIs such as SWT and
JFace. First, since web development is very popular, the visual-
ization toolkits tend to be more mature than the IDE-specific
toolkits. Also, using web development technologies theoretical-
ly makes the timeline reusable across multiple IDEs.

The drawing part is written using the Scalable Vector
Graphics (SVG) format [26] and the JavaScript package D3.js
[27], which means that we were able to implement the zooming
and scrolling without much extra effort.

G. Performance Evaluation

The timeline should not significantly affect the response
time of the code editor. According to our field study data

2
, the

average number of edits per week was 8,480, assuming 40
hours of work a week. Thus, we measured the response time of
several important operations of our timeline with 500 and
10,000 rectangles, which approximates two hours and one

2
 The data was collected for 295 hours of coding activities from 5 professional

developers using FLUORITE [5].

Fig. 3. Code history diff view of AZURITE. The previous version of the selected code from 10:29am is shown in the left panel, and the most recent version of the

code is shown in the right panel. Users can move through the history by either clicking the Prev/Next navigation buttons at the top right, or dragging the vertical

red marker shown in the timeline, which instantly updates the code on the left panel and the diffs. Multiple code history diff views can be shown at the same time.

TABLE I. SUMMARY OF MEASURED RESPONSE TIMES (IN MS)

 Compact mode Real-time mode

of rectangles # of rectangles

Operation 500 10,000 500 10,000

Add Rect 3 35 3 29

H-Scroll 45 174 26 68

V-Scroll 6 11 6 14
Layout 140 12,383 23 234

week of work, respectively. The time was measured on a PC
running Windows 8 and Internet Explorer 10 with a 2.60GHz
CPU

3
. The results are summarized in Table 1.

Overall, the compact mode is much slower than real-time
mode because of the calculations to remove the gaps. The only
operation that is automatically performed while the developer
is editing code is Add Rectangle, which only takes a negligible
time (35ms) even in compact mode with 10,000 rectangles,
which means that the timeline is non-intrusive. The other three
operations in Table 1 are called only when the user interacts
with the visualization. Horizontal scrolling takes significantly
more time than vertical scrolling because it needs to re-
calculate the time guides at the bottom. A Layout routine recal-
culates the positions of all rectangles, and it is called when the
file filtering option is changed. Although Layout takes more
than 12 seconds for 10,000 rectangles in compact mode, this is
not likely to be an issue in practice because the number of rec-
tangles was a huge overestimation, and the Layout operation is
not needed for most use cases of our tool. In addition, this
problem could be mitigated by optimizing the performance by
pre-caching some values and grouping multiple operations into
one big rectangle for old history items.

III. CODE HISTORY DIFF VIEW

A. Basic Features

The code history diff view is shown in Fig. 3. Users can se-
lect an arbitrary code snippet from the regular Eclipse code
editor windows and launch this view, which is a code-compare
view with two juxtaposed panels. The left-hand panel shows
some version of the code in the past along with the version
number, and the exact time when the change was made. The
right-hand panel always shows the current version (i.e., the
most recent version) of the code snippet. The diffs between the
two code snippets are marked. The left side code can go all the
way back to when the code did not even exist, assuming that
this is in the history.

Users can move back and forth through the history in two
ways. First, they can drag the marker within the timeline with
mouse to see how the code looked at the time at which the
marker is pointing. The marker is a red vertical line, as shown

3
 The browser information is relevant because the timeline runs in an embed-

ded browser. Different browsers are used by different platforms.

in Fig. 3, which appears in the timeline when a code history
diff view is shown. This design was inspired by the time mark-
er in video editors. The code snippet shown on the left panel
changes instantaneously as the marker is moved, and diffs are
recalculated as well. Alternatively, users can use the navigation
buttons above the code to move back and forth through differ-
ent versions incrementally. This is useful when there are many
rectangles in the timeline between versions, which are irrele-
vant to the code snippet that the user is interested in. Whenever
the version changes using the navigation buttons, the marker
position in the timeline is also updated correspondingly.

The code history diff view can be used for several different
purposes. First, it can be used to simply understand how the
code has evolved. In addition, this view can be used to look for
some deleted code and copy the code to reuse it in the current
code. Finally, users can revert the code snippet to one of its
previous versions simply by moving to the desired version and
clicking the “Revert” button.

To implement this view, AZURITE first searches for all edits
performed on the code snippet, and then reconstructs all the
intermediate snapshots using the selective undo feature.

B. Scope of Code Snippets

While most other tools only provide file-based history or
method-based history at best, AZURITE can show the history of
an arbitrary code snippet of any size. For example, users might
investigate how an ‘if’ block was originally written, how the
parameters to a function call have changed, or even how a
mathematical expression within a single line has evolved.

One limitation of our code history diff view is that it can
only handle a single contiguous block of code. One reason is
because Eclipse does not allow non-contiguous blocks to be
selected at the same time. To partially overcome this problem,
AZURITE allows multiple code history diff views to be launched
as separate tabs which can be dragged to be side-by-side or
even in a window outside of Eclipse. This is useful when there

are multiple code snippets coupled together
around a certain feature, which has been referred
to as a working set [24]. In this case, all open
code history diff views share the same time
marker in the timeline, and users can intuitively
see how those code snippets as a whole have
evolved over time.

IV. UNDERLYING DATA STRUCTURES

A. Dynamic Segment Management

To support these visualizations, a full code
editing history must be kept. At least the follow-
ing information must be kept to determine the
position and size of each rectangle and for dis-
playing the tooltip: the type of each edit opera-
tion (i.e. Insert, Delete, or Replace), the offset
representing the location where the operation was performed
within the file, the length of the inserted or deleted text, the
actual text that was inserted or deleted, and the precise
timestamp indicating when the edit was performed. AZURITE
collects these data using our FLUORITE [5] logging tool, which
is included with the AZURITE plug-in.

However, this information cannot be directly used to sup-
port many of the most useful commands. For example, when
performing selective undo on some past operations, the imple-
mentation must be able to tell where those operations were
performed in the current state of the code. This is not trivial
because the offsets change whenever some text is inserted or
removed above the location in the file of the edit. Thus, before
a selective undo operation can be performed, all offsets of op-
erations above it in the file need to be adjusted dynamically.
Additionally, these dynamic positions are required to support
searching for all of the edits performed in a certain area of code.

The basic idea here is similar to the dynamic pointers intro-
duced in the collaborative editing context [28]. Our approach
differs in that we keep track of dynamic segments instead of
pointers to single positions. A segment is composed of offset
and length. The dynamic segment calculation mechanism used
in AZURITE is illustrated in Fig. 4.

B. Detecting Changes Made Outside of the IDE

Source code can be changed outside of the IDE for many
reasons. For example, the code can be modified by the external
version control system while the IDE is not running, to revert
to an earlier version, or updated to reflect the changes made by
another team member. Sometimes, users might edit the code
with a plaintext editor instead of using the IDE. In addition, if a
file is closed without saving, then the last known snapshot of
the file kept in AZURITE would be out of sync when the file is
reopened later. Moreover, there is even a possibility of IDE
crash, cutting off the history file.

Since we are dealing with individual incremental changes
instead of full snapshots, a single missing item in the edit histo-
ry can confuse the entire history. To avoid this problem,
AZURITE detects such situations by keeping the initial snapshot
and the last known snapshot of each file that was open in the
current session. When a file is re-opened, AZURITE compares
the new snapshot with the last known snapshot, and, if they are
different, extracts diffs between those two snapshots to fill in
the missing changes. Similarly, when reading the history of
past sessions, AZURITE compares the final snapshot of each file
in the past sessions, and the known initial snapshot of that file
in the next session to check the validity of the history. This

process is done using the Google-diff-match-patch open-source
library [29, 30]. The high-level architecture of the entire system
is shown in Fig. 5.

C. Granularity of Changes

All the mechanisms mentioned above do not assume any
knowledge about the granularity of the recorded changes.
AZURITE uses the fine-grained editing changes as recorded by
FLUORITE [5], but in theory, the same approach could be used
with more coarse-grained changes as well. For instance, the
same set of visualizations could be used with the logs provided
by version control systems, or the Eclipse local history. The
size of the scope that could be visualized in the code snippets
(Sec. III.B) would be determined by the granularity of changes
recorded in the logs.

V. EXAMPLE USE CASES

This section lists some example use cases where these visu-
alizations and information filtering mechanisms can be used to
solve real-world problems that previous research shows that
software developers face. This provides evidence that these
tools will be useful.

A. Answering History-Related Questions Developers Ask

Prior research has identified many hard-to-answer questions
developers ask as part of their development activities [23, 31,
32]. These include the following history-related questions
(quoted directly from [23]), which can be easily answered us-
ing AZURITE’s visualizations. Note that answering these history
questions can also be an effective strategy for answering high-

Fig. 5. The high-level architecture of the entire system. Each node represents

a component in the system, and the arrows indicate the data flow. Different
input sources can be used to provide the same set of visualizations. In case of

snapshot-based input sources, diffs between two consecutive snapshots should

be extracted first.

Fig. 4. Illustration of dynamic segment management. Each dynamic segment is denoted as

<offset, length>. OP1 inserts println(), OP2 inserts “Hello” within the parentheses, and then

OP3 deletes ln from the method name println, in temporal order. Below the code is illustrated

how the existing dynamic segments are updated or split as new operations are performed.

er-level rationale questions, as pointed out in [23].

1) When, how was this code changed or inserted?

2) How has it changed over time?

3) Has this code always been this way?
These three questions can be easily answered by selecting

the code and launching the code history diff view, which would
show how the code has changed over time with the exact
timestamp of each change.

4) What recent changes have been made?
Developers can load the history of the past editing session

to see what recent changes have been made to the project.
Since the most recently changed file is always shown at the top
of the timeline, the recently changed files can be easily identi-
fied by reading the file names from the top. If more detailed
information is needed, the user can jump to the specific code by
double-clicking the last rectangle of each file and the code
history diff can be viewed to see the actual code edits.

5) What else changed when this code was changed or

inserted?
First, the code history diff view can be used to determine

when this code was changed or inserted. Next, using the mark-
er position shown in the timeline, the user can select by time
across all the edited files the range of operations involved in
that change. Then the other files edited together within that
timeframe can easily be determined by invoking the “show all
files edited together” command from the context menu.

6) How did this ever work?
Although it would not directly answer this question,

AZURITE can help provide some clues by allowing developers
to quickly identify when the code was introduced, and go back
to see the way the whole project was at that point in time, so
that they can test the program under the configuration where
the code was introduced. If the code still does not work in that
situation, then it is likely that the code has never actually
worked correctly.

B. Selective Undo Scenarios

In our previous study, we identified several problems de-
velopers face while trying to go back to a previous state, which
we call “backtracking” [11]. Based on those observations, we
list some scenarios where the visualizations and selective undo
feature can help with backtracking tasks. Since these scenarios
often occur in between version control commits, version con-
trol systems would probably not help in these situations.

1) Reverting LayoutManager to a Previously Used One
When programming graphical user interfaces (GUIs), one

often ends up having to experiment with different layout man-
agers to get the UI to look as desired. Imagine the following
scenario: A developer is implementing a GUI dialog in Swing.
She first writes the code with GridBagLayout, and then

changes to a simpler BoxLayout manager because of the com-

plex parameters of GridBagLayout. Then she realizes Box-

Layout does not look right, and wants to revert back to

GridBadLayout. Assuming the target operations will be close
together either in location or time, this can be done using
AZURITE. History search will find the point in time where
“GridBagLayout” existed in the code snippet, and the user
can use the timeline and/or code history diff view to find the
exact point to backtrack to, and then revert the code with the
“undo everything to this point” command. Note that this works
even if other, unrelated changes are made after or interspersed

with the edits to the layout manager, which would make using
conventional undo or a version control system inappropriate.

This could be achieved without AZURITE had the developer
commented out the GridBagLayout code instead of deleting it.
However, we observed that even the developers who explicitly
said they regularly commented out code, occasionally deleted
code which turned out to be needed later [11].

2) Restoring Deleted Code in General

Searching for the code like “GridBagLayout” is not the
only way to restore the deleted code. We also noticed that de-
velopers often remember where the code was deleted, or what
the surrounding code looked like, in which case code history
diff view can be used to find and then restore the desired code.

3) Removing Temporary Debugging Code
One popular debugging strategy is to add print or logging

statements in various locations to see how the values change as
the program executes. In many cases, these statements are tem-
porary and should not be committed to the main repository.
Removing all the recently added println statements, however,
can be a tedious task if they are spread across multiple loca-
tions. If the println statements were consecutive in the his-
tory (i.e., they were inserted at the same time), this can be done
relatively easily with AZURITE. First, the user can locate one of
the println statements from the code editor with regular
search, for example. Then, the user can identify the point in
time when the statement was inserted with history search or
code history diff view. Since all the println insertions would
appear near to each other in the timeline, they can be easily
selected together and undone at once. This works even if there
are other println statements mixed in the code that were not
part of this debugging and thus should be kept unchanged, in
which case regular text search would be less useful.

4) Aborting or Undoing a Manual Refactoring
4

Murphy-Hill et al. discovered that developers perform re-
factoring manually about 90% of the time [33]. Aborting a
manual refactoring in the middle, or undoing it sometime later
could be tedious, because there can be many steps of changes
and even multiple files involved to achieve a certain refactoring.
Using AZURITE, a manual refactoring can be reverted in vari-
ous ways. Users can use the code history diff view to navigate
to the desired version of the code and revert the snippet to that
version. If there are multiple files involved, they can find the
other files that were edited together using AZURITE’s filtering
feature and undo them together. Depending on the type of re-
factoring, other types of history search can help. For instance,
if the refactoring was Extract Method, one could easily find the
point in time right before the refactoring was performed by
searching for the time when the extracted method name first
existed.

C. Other Benefits

Developers often need to remember the previously attended
locations in code when resuming from an interruption or when
switching between tasks [34]. The timeline can be used as au-
tomatic bookmarks of recently edited locations in such a situa-
tion. Using the timeline, developers can quickly see which files
were the most recently edited in a project or in a workspace as
a whole. For each file, the last edited location can be easily
visited by double-clicking on the last rectangle that appears in

4
 This example was not observed from our study, but derived from the first

author’s personal experience of using AZURITE during his own work.

the timeline. Unlike manual bookmarks, this works well even
when there are a great many files in the developer’s workspace.

VI. FUTURE WORK

A. Supporting a Team Development Environment

One limitation of the current version of AZURITE is that it
only handles a single developer’s edits. By storing who made
each change, and sharing the edit history among the team
members, it could help with answering more history related
questions such as “who modified this piece of code most re-
cently?” [31]. In order to achieve this, it would be best if the
edit history was somehow kept in the version control system
with code, and AZURITE would need to be able to deal with the
code merging situations.

B. Providing New History Search Features

Our current timeline visualization displays an arbitrarily
long edit history, and it can be difficult for the users to pick the
right set of operations manually. Although we support the most
common kinds of search through the history already (as dis-
cussed above), we envision that novel kinds of history search
would be helpful. Our goal is to enable users to express what-
ever they remember about the previous edits or situations that
they want to select in the history. In particular, we plan to allow
users to search for points in the history when:

 the application was run or debugged,

 a specific unit test, or all tests, passed or failed,

 a specific or a sequence of edit operations happened
(e.g., copy-and-paste from the web, an Extract Method
refactoring),

 a particular point in real time (“last Thursday”), or a
range of time (“last week”),

 a set of semantically equivalent (or similar) code edits
were made in various locations (crosscutting concerns),

 a particular task was being completed (e.g., as tracked
by task management systems such as Mylyn [35]), or

 any combination of these.
Using these options, one could search for “all edits since

the last commit related to println statements,” for example.

C. Providing Richer Commands Executed on Past Operations

With the capability of filtering and selecting past changes
provided by the timeline, we are able to provide more editor
commands that can be executed on some past operations. We
demonstrated some commands such as selective undo in Sec-
tion II.C, but we also plan to provide more commands includ-
ing the following:

 highlight all of the affected code in the code editor,

 redo (apply the same change to other similar code frag-
ments),

 add a checkpoint / bookmark / annotation (so that users
can revert back to this point at any time, or make a note
about a set of changes or a point in time),

 commit to the repository (without committing the other
changes), or

 find and select code or edit operations which are seman-
tically related to the selected ones. For example, if the
current edit changes the name of a variable, find all the
other edits of that variable name.

VII. RELATED WORK
Dwell-and-spring [36] is a recent selective undo mechanism

for direct manipulation. It provides an interface for undoing

any press-drag-release interaction, while AZURITE works on
editing operations.

Some text editors, such as Emacs [37] and DistEdit [38],
support regional undo, where the user undoes the operation that
affected a specific selected region of text. Regional undo can
be achieved in AZURITE by searching for all edits for the region
of code and invoking selective undo. In regional undo, however,
there can be an ambiguity if the user selects a region which
partially overlaps with an operation’s effective region. Li and
Li refer to this problem as region overlapping, and introduce
the idea of partial undo as a solution, which undoes only over-
lapped part of the operation when an operation partly falls in
the given undo region [39]. In this case, AZURITE includes all
the partially overlapping dynamic segments (see IV.A) and
undoes them, which means that some code right outside user’s
selection could be reverted.

There are a few systems which track fine-grained code
change history similar to FLUORITE [5]. OperationRecorder [4]
associates each edit with the corresponding abstract syntax tree
(AST) node. CODINGTRACKER [7, 8] also tracks fine-grained
code editing data, but mostly focuses on analyzing developers’
coding behaviors such as refactoring. IDE++ [40] is a system
that captures all types of IDE interactions, which are not lim-
ited to code edits. However, none of these provide the visuali-
zation, history view or undo operations of AZURITE.

There are systems that provide history search, which has al-
so been called “history slicing.” OperationSliceReplayer [6]
uses the AST data kept by OperationRecorder [4] to filter the
changes that affected a certain class member. CHRONOS [41]
uses the version control snapshots to trace back to find which
commits affected a certain area of code. The search scope of
CHRONOS can be as small as a single line.

Hayashi et al. proposed the idea of edit history refactoring,
which is a restructuring of an edit history without affecting the
final result of the code, and implemented it in their system
called Historef [42]. Historef also provides a selective undo
feature using history refactoring. The selected operations are
first moved to the end of the history using swap refactoring, the
changes are merged into a single operation, and then the in-
verse operation of it is executed. This approach, however, can-
not address situations where the operations conflict, which our
selective undo can handle. Historef also does not provide any
visualizations or history search mechanisms that would help
users to find and select the operations to be undone.

There are other edit history visualizations using timelines.
CHRONOS [41] shows the results of history searches in a
zoomable timeline. Since CHRONOS is designed to work with
coarse-grained version control history, however, it is not ade-
quate for visualizing a large amount of small edits.
CODETIMELINE [43] is a visualization for presenting the social
history of a software project, similar to Facebook’s Timeline.
Developers can manually add sticky notes or photos to recall
the social events associated with the project. It also visualizes
some level of edit history information such as the lifecycle of
all files and the code ownership, but it is primarily designed for
helping people recall and share memories, not for providing
editor commands as provided by AZURITE. The software evolu-
tion Storyline [44] is another timeline visualization which fo-
cuses on who contributed to the project over time.

Most VCSs provides a way to trace the history of a single
file, which is presented as a linear list of relevant changesets
along with their commit messages. Xcode 4 has a feature called

Version Editor [45], where the history of a file is displayed in a
code compare view with two panels, and users can move
through the history using the vertical timeline located between
those two panels. The local history feature of some IDEs keeps
snapshots of each file automatically upon file save (Eclipse
[46]) or as the code changes (NetBeans [47]). The local history
shows a linear list of saved snapshots of each file, but only with
their timestamps without any human-readable descriptions.
These approaches are limited in that the history can only be
seen at file level, and it can be hard to find the desired snap-
shots.

VIII. CONCLUSION

Despite the recent trends to exploit more fine-grained code
editing histories, their use in existing tools has mostly been
limited to replaying the history, or analyzing the data for re-
search purposes. We demonstrate in this paper that these fine-
grained histories can also be useful for developers with proper
visualizations and several editor commands which tightly inte-
grate with the history. We believe that providing more refined
editor commands with more history search options would make
developers more comfortable in code editing, fostering more
exploration and more reliable backtracking. This approach
might also be applied to regular text editors, and possibly even
to graphical editors.

AZURITE is an open-source Eclipse plug-in. More infor-
mation about AZURITE can be found, and the plug-in can be
downloaded, at: http://www.cs.cmu.edu/~azurite/.

ACKNOWLEDGMENTS

Funding for this research comes in part from the Korea
Foundation for Advanced Studies (KFAS) and in part from
NSF grant IIS-1116724. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of KFAS or
the National Science Foundation.

REFERENCES

[1] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution," Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, 2007, pp. 77-131.

[2] R. Robbes and M. Lanza, "A Change-based Approach to Software
Evolution," Electronic Notes in Theoretical Computer Science, vol. 166,
2007, pp. 93-109.

[3] R. Robbes and M. Lanza, "SpyWare: a change-aware development
toolset," Proc. Intl. Conf. on Soft. Eng. (ICSE'08), 2008, pp. 847-850.

[4] T. Omori and K. Maruyama, "A change-aware development
environment by recording editing operations of source code," Proc. Intl.
working Conf. on Mining Soft. Repositories (MSR'08), 2008, pp. 31-34.

[5] Y. Yoon and B. A. Myers, "Capturing and analyzing low-level events
from the code editor," In PLATEAU'11, 2011, pp. 25-30.

[6] K. Maruyama, E. Kitsu, T. Omori, and S. Hayashi, "Slicing and
replaying code change history," In ASE'12, 2012, pp. 246-249.

[7] S. Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig, "Is It
Dangerous to Use Version Control Histories to Study Source Code
Evolution?," In ECOOP'12, 2012, pp. 79-103.

[8] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, R. Z. Moghaddam,
and R. E. Johnson, "The Need for Richer Refactoring Usage Data," In
PLATEAU'11, 2011.

[9] L. Hattori, M. D'Ambros, M. Lanza, and M. Lungu, "Software Evolution
Comprehension: Replay to the Rescue," In ICPC'11, 2011, pp. 161-170.

[10] L. Hattori and M. Lanza, "Syde: a tool for collaborative software
development," Proc. Intl. Conf. Soft. Eng. (ICSE'10), 2010, pp. 235-238.

[11] Y. Yoon and B. A. Myers, "An exploratory study of backtracking
strategies used by developers," In CHASE'12, 2012, pp. 138-144.

[12] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R.
E. Johnson, "Use, disuse, and misuse of automated refactorings," Proc.
Intl. Conference on Software Engineering (ICSE'12), 2012, pp. 233-243.

[13] T. Berlage, "A selective undo mechanism for graphical user interfaces
based on command objects," ACM Transactions on Computer-Human
Interaction, vol. 1, 1994, pp. 269-294.

[14] D. Kawrykow and M. P. Robillard, "Non-essential changes in version
histories," Proc. Intl. Conf. on Soft. Eng. (ICSE'11), 2011, pp. 351-360.

[15] B. A. Myers and D. S. Kosbie, "Reusable hierarchical command
objects," In CHI'96, 1996, pp. 260-267.

[16] B. A. Myers, "Scripting graphical applications by demonstration," In
CHI'98, 1998, pp. 534-541.

[17] D. Kurlander and S. Feiner, "Editable graphical histories," Proc. 1988.,
IEEE Workshop on Visual Languages 1988), 1988, pp. 127-134.

[18] S. R. Klemmer, M. Thomsen, E. Phelps-Goodman, R. Lee, and J. A.
Landay, "Where do web sites come from?: capturing and interacting
with design history," In CHI'02, 2002, pp. 1-8.

[19] M. Terry, E. D. Mynatt, K. Nakakoji, and Y. Yamamoto, "Variation in
element and action: supporting simultaneous development of alternative
solutions," In CHI'04, 2004, pp. 711-718.

[20] D. Kurlander and S. Feiner, "A Visual Language for Browsing,
Undoing, and Redoing Graphical Interface Commands," Visual
languages and visual programming, 1990, p. 257.

[21] M. Chii, M. Yasue, A. Imamiya, and M. Xiaoyang, "Visualizing
histories for selective undo and redo," Proc. 3rd Asia Pacific Computer
Human Interaction 1998), 1998, pp. 459-464.

[22] R. Holmes and A. Begel, "Deep intellisense: a tool for rehydrating
evaporated information," In MSR'08, 2008, pp. 23-26.

[23] T. D. LaToza and B. A. Myers, "Hard-to-answer questions about code,"
In PLATEAU'10, 2010, pp. 1-6.

[24] A. J. Ko, H. Aung, and B. A. Myers, "Eliciting design requirements for
maintenance-oriented IDEs: a detailed study of corrective and perfective
maintenance tasks," In ICSE'05, 2005, pp. 126-135.

[25] C. Omar, Y. S. Yoon, T. D. LaToza, and B. A. Myers, "Active code
completion," In ICSE'12, 2012, pp. 859-869.

[26] World Wide Web Consortium, "Scalable Vector Graphics (SVG) 1.1,"
2011; http://www.w3.org/TR/2011/REC-SVG11-20110816/.

[27] M. Bostock, "D3.js - Data-Driven Documents," 2012; http://d3js.org/.

[28] G. D. Abowd and A. J. Dix, "Giving undo attention," Interacting with
Computers, vol. 4, 1992, pp. 317-342.

[29] N. Fraser, "google-diff-match-patch - Diff, Match and Patch libraries for
Plain Text," 2012; http://code.google.com/p/google-diff-match-patch/.

[30] E. W. Myers, "An O (ND) difference algorithm and its variations,"
Algorithmica, vol. 1, 1986, pp. 251-266.

[31] T. Fritz and G. C. Murphy, "Using information fragments to answer the
questions developers ask," In ICSE'10, 2010, pp. 175-184.

[32] A. J. Ko, R. DeLine, and G. Venolia, "Information Needs in Collocated
Software Development Teams," In ICSE'07, 2007, pp. 344-353.

[33] E. Murphy-Hill, C. Parnin, and A. P. Black, "How we refactor, and how
we know it," In ICSE'09, 2009, pp. 287-297.

[34] C. Parnin and S. Rugaber, "Programmer information needs after memory
failure," In ICPC'12, 2012, pp. 123-132.

[35] M. Kersten and G. C. Murphy, "Using task context to improve
programmer productivity," In FSE'06, 2006, pp. 1-11.

[36] C. Appert, O. Chapuis, and E. Pietriga, "Dwell-and-spring: undo for
direct manipulation," In CHI'12, 2012, pp. 1957-1966.

[37] Free Software Foundation, "Undo - GNU Emacs Manual,"
http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html.

[38] A. Prakash and M. J. Knister, "A framework for undoing actions in
collaborative systems," ACM Trans. Comput.-Hum. Interact., vol. 1,
1994, pp. 295-330.

[39] R. Li and D. Li, "A regional undo mechanism for text editing," Proc. Intl.
Workshop on Collaborative Editing Systems (IWCES'03), 2003.

[40] G. Zhongxian, "Capturing and exploiting fine-grained IDE interactions,"
In ICSE'12, 2012, pp. 1630-1631.

[41] F. Servant and J. A. Jones, "History slicing: assisting code-evolution
tasks," In FSE'12, 2012, pp. 1-11.

[42] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and M. Saeki,
"Refactoring edit history of source code," In ICSM 2012, pp. 617-620.

[43] A. Kuhn and M. Stocker, "CodeTimeline: Storytelling with versioning
data," In ICSE'12, 2012, pp. 1333-1336.

[44] M. Ogawa and K.-L. Ma, "Software evolution storylines," In Proc.
SOFTVIS'10, 2010, pp. 35-42.

[45] Apple Inc., "What's New in Xcode 4,"
https://developer.apple.com/technologies/tools/whats-new.html

[46] Eclipse Foundation, "Eclipse - The Eclipse Foundation open source
community website.," http://www.eclipse.org/.

[47] Oracle Corporation, "NetBeans IDE," http://netbeans.org/.

http://www.cs.cmu.edu/~azurite/
http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://d3js.org/
http://code.google.com/p/google-diff-match-patch/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html
http://www.eclipse.org/
http://netbeans.org/

