
Active Code Completion
Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, Brad A. Myers

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
{comar,youngseok,tlatoza,bam}@cs.cmu.edu
https://github.com/cyrus-/graphite

I. INTRODUCTION
Software developers today make heavy use of the code

completion features available in modern code editors [1]. By
navigating and selecting from a floating menu containing the
names of variables, fields, methods, types and code snippets, a
developer can avoid many common spelling and logic errors,
avoid unnecessary keystrokes and explore unfamiliar APIs
without leaving the editor window. To ensure that the items
featured in this menu are relevant, the editor conducts a static
analysis of the surrounding code context.

Several refinements and additions to the code completion
menu have been previously suggested in the literature. These
have focused on using additional sources of information, such
as databases of usage history [2], examples extracted from code
repositories [3] and crowdsourced information [4], to increase
the relevance and sophistication of the featured items.
Empirical evidence presented in these studies suggests that
these enhancements further improve developer productivity.

In this paper, we propose a complementary technique called
active code completion. When the developer invokes the code
completion menu, the editor looks for a palette definition
associated with the type of the expression being entered. If
found, an option to use this palette is added to the code
completion menu. When the developer selects this option,
source code is not inserted immediately. Instead, the palette
definition takes control of the code completion interface. The
developer can then interact with this interface to provide
parameters and other information related to her intent, and
receive immediate feedback about the effect these choices will
have on the object’s behavior. When the developer indicates
that she is satisfied with these choices, the palette generates
code that is inserted at the cursor.

Before designing and implementing such a system, we
sought to address the following questions:

• What are some specific use cases for active code
completion in a professional development setting?

• Which functional criteria are common to types that
would benefit from an associated palette?

• What usability criteria should inform palette interface
designs in this context?

• Which capabilities must the active code completion
architecture have to enable these use cases and designs?

To answer these questions, we began by conducting a large
online survey of professional developers. Their responses
revealed a number of interesting use cases and non-trivial
design constraints for active code completion systems.

Based on this information, we designed and implemented
an Eclipse plug-in that provides active code completion for the
Java language, and implemented some example palettes atop
this system. Finally, we evaluated the usefulness of one such
palette, designed to assist developers as they write regular
expressions, with a controlled lab study. The data and
observations from this study provide empirical evidence in
support of the view that an active code completion system
would be useful to professional developers.

II. DEVELOPER SURVEY
The subject pool for the preliminary survey consisted

primarily of visitors to a large programming-oriented
collaborative filtering forum1. A small number of participants
were also recruited using a mass email to local computer
science graduate students. Participants were asked to take an
online survey taking approximately 20 minutes to complete.
Background information collected from the 475 participants
indicated that the overwhelming majority of participants were
professional developers.

Participants were shown three mockup palettes, along with
mockups of the invocation procedure described above, for
classes representing colors, regular expressions and SQL
queries. They were asked to indicate whether they would find
these palettes useful. Their responses are summarized in Fig. 2
and indicate that these developers found the concept potentially
useful, with a particular preference for the palette shown for
regular expressions.

Participants were also asked to provide free-form comments
on each palette. These responses revealed a number of concerns
about this system. These include issues related to handling
separation of concerns, reinvocation, palette settings and state,
interactions between the palette and the code context, language
and editor independence, and keyboard navigability. These
concerns strongly influenced the design of the code completion
system described in the next section.

Finally, we solicited suggestions for classes that may
benefit from an associated palette. We received a number of
interesting suggestions, which we broadly classified into

1 http://www.reddit.com/r/programming

categories. Examples include classes that would benefit from
an alternative syntax (e.g. dictionaries), where the implications
of a parameter choice are difficult to predict (e.g. 3D
transformation matrices), where the instantiation procedure is
non-trivial (e.g. factory methods), and where parameters could
be provided by example (e.g. key combinations).

III. PROTOTYPE IMPLEMENTATION
Next, we implemented an active code completion system as

an Eclipse Java plug-in called GRAPHITE, an acronym for
GRAphical Palettes Help Instantiate Types in the Editor.

A. Association Model
Graphite provides two mechanisms to associate a palette

with a class. The annotation-based association model allows
the developer of a class to associate a palette definition with it
using a Java annotation, GraphitePalette. The annotation
contains the URL of the palette and metadata used to control
the description of the palette in the code completion menu. This
association model is beneficial because end-users need not
realize that a palette is available for a class – when they invoke
the code completion menu, they discover that a palette exists.
This stands in contrast to relevant external tools, which must be
explicitly discovered by users.

For classes which are not amenable to direct modification,
such as those in the Java standard library, an external
association model is available in the Graphite preferences pane.
Users can explicitly associate a palette with the fully-qualified
name of a class using this model.

B. Palette Implementation Model
A common concern expressed in our developer survey was

that active code completion should not rely on a particular
editor environment. To satisfy this constraint, we did not want
to use an IDE-specific user interface framework (e.g. SWT and
JFace for Eclipse). Instead, we designed Graphite so that
palettes were written using HTML and Javascript. Our
preliminary study confirmed that these languages are well-
known among Java developers. A small Javascript bridge API
was developed to allow palettes to access the current selection
in the editor (used to allow reinvocation of palettes) and to
insert code at the cursor. The Eclipse plug-in simply displays

the palette in a floating browser window, without any
associated chrome, and responds to invocations of bridge
functions.

This strategy could be straightforwardly replicated in other
editor environments, without requiring that palette definitions
be modified. Indeed, with appropriate logic in the bridge API,
one palette may be able to support several distinct languages.

IV. LAB STUDY
In order to evaluate the usefulness and usability of Graphite,

we conducted a lab study with a palette designed for regular
expressions (Fig. 1). Participants were asked to write regular
expressions in the Java programming language, in response to
several prompts. The control group was not given access to
Graphite, but was otherwise free to use online resources. The
treatment group was given a short tutorial about the Graphite
system using a palette for the Color class as an example. The
fact that a palette existed that was relevant to the tasks they
would be asked to perform was mentioned, but the palette itself
was not explicitly demonstrated, and its use was not required.

Although our present sample size of 7 participants renders
quantitative comparison inappropriate, several qualitative
observations support the view that Graphite was helpful for
users in this task. In particular, we found that the participants in
the control group were facing difficulties that the palette was
designed to address, including difficulty with the factory
pattern used by Java regular expressions and the requirement
that backslashes be doubly-escaped. We also observed that few
subjects wrote adequate testing code to ensure that their regular
expressions were correct. Participants in the treatment group,
on the other hand, had few or no difficulties with these issues
and wrote tests more frequently, due to the support for testing
in the palette interface, and therefore generated more correct
code. Feedback from these participants, as well as participants
in the control group who were shown the regular expression
palette following the experiment, was also positive.

REFERENCES
[1] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software

developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[2] R. Robbes and M. Lanza, “How program history can improve code
completion,” in 23rd IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 317–326.

[3] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, p. 213?222, ACM
ID: 1595728.

[4] M. Mooty, A. Faulring, J. Stylos, and B. Myers, “Calcite: Completing
code completion for constructors using crowds,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2010 IEEE Symposium on,
2010, pp. 15–22.

Figure 1. Graphite palette designed for regular expressions

Figure 2. The distribution of responses to the question: "Consider situations
where you need to instantiate the [specified] class. What portion of the time,
in these situations, do you think you would use this feature?

