

Figure 1. Aquamarine’s History Panel showing operation #10

(brush stroke for the nose) selectively undone.

Selective Undo Support for Painting Applications
Brad A. Myers1, Ashley Lai1, Tam Minh Le1, YoungSeok Yoon1, Andrew Faulring1, Joel Brandt2

 1School of Computer Science 2Creative Technologies Lab
 Carnegie Mellon University Adobe Research
 5000 Forbes Avenue, Pittsburgh, PA 15213 San Francisco, CA
{bam, youngseok, faulring}@cs.cmu.edu, {ashleyhlai, minny.le}@gmail.com joel.brandt@adobe.com

ABSTRACT
Today’s widely deployed painting applications use a linear
undo model that allows users to backtrack previous opera-
tions in reverse chronological order. This undo model is not
useful if the user has performed desired operations after
undesired ones. Selective undo, in contrast, allows users to
select specific operations in the past and only undo those,
while keeping the remaining operations intact. Although
selective undo has been widely explored in the context of
text editing and object-oriented drawing, we explore selec-
tive undo for painting (bitmap) editing, which has received
less attention and introduces many interesting user interface
design challenges. Our system, called Aquamarine, ex-
plores the script model for selective undo, where selectively
undone operations are skipped in the history, rather than the
more explored inverse model, which puts an inverse of the
selected operations at the end of the history. We discuss the
design implications and show through two informal user
studies that selective undo is usable and desirable.

Author Keywords
Selective Undo; Bitmap Editor; Creativity Support.

ACM Classification Keywords
H.5.2 User Interfaces (Graphical user interfaces (GUI));
I.3.4 Graphics Utilities (Paint systems); I.3.6 Methodology
and Techniques (Interaction techniques).

INTRODUCTION
The undo operation has long been understood to be a re-
quired command in applications, especially to support crea-
tive exploration. Studies have shown that when users have
the ability to undo, they are more comfortable exploring
and trying new commands [16]. Ideally, any previous oper-
ation should be able to be undone. However, most applica-
tions use the same restricted linear undo model [3], pri-
marily due to the user interface challenges of presenting a
more powerful undo model in a way that it is easy for the
user to understand. In the linear undo model, multiple oper-

ations are saved on the undo stack and can be undone, and
after undoing some operations, users can change their mind
and start redoing those operations again. However, if a new
operation is performed after undoing some operations, the
undone operations are discarded and are no longer available
for redoing. This makes it impossible for the user to undo
the undo. Another limitation of the linear undo model is
that all operations must be undone in order. This makes it
impossible to keep any operations that happen after an op-
eration to be undone. That is, if there are a mixture of want-
ed and unwanted operations, users cannot use undo to
achieve their desired result [24].

The limitations of linear undo have motivated research on
selective undo, where the user can specifically select which
of the previous operations to undo and which to keep [1-3,
5, 19, 25]. However, this prior work has primarily focused
on object-oriented drawing programs, like PowerPoint or
Adobe Illustrator [3, 19], where selective undo is more easi-
ly achieved by selecting and changing objects’ properties.
New work has started to address selective undo in text [17,
25], but there is little work on selective undo in painting
applications like Photoshop which lack the structures used
by object editing programs, and where operations tend to
affect overlapping spans of pixels. This makes it much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04…$15.00
http://dx.doi.org/10.1145/2702123.2702543.

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4227

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2702123.2702543

more difficult for users to identify which operations to undo
(since there may be many small edits) and to predict the
outcome of selectively undoing something in the past. Fur-
thermore, it is challenging to provide understandable user
interfaces for any selective undo model. Note that through-
out this paper, we are deliberately distinguishing the term
drawing from painting. Drawing programs have identifiable
objects in the picture that can be selected and manipulated
later, whereas painting programs convert objects into pixels
immediately, and subsequent selections and operations are
at the pixel level. Many painting operations cannot be natu-
rally converted into objects with a distinct shape. For ex-
ample, the paint bucket tool and filters do not create or even
necessarily modify objects; instead they manipulate pixels.
Aquamarine focuses on painting only. Note that modern
image manipulation programs like Photoshop actually have
a mixture of drawing and painting features.

Another interesting issue is the distinction between the in-
verse and script models of selective undo. In the inverse
model, supported by most previous selective undo systems
[3, 19, 25], a selective undo causes the inverse of the select-
ed operations to be added to the end of the history. For ex-
ample when the user selectively undoes a delete, a create
operation is performed and added to the end of the history.
In contrast, the script model removes the selected operation
from the history and performs all subsequent operations as
if that operation had never been performed [15]. This can
cause semantic problems in drawing programs (for exam-
ple, what is the meaning of a change-size operation applied
to an object if the previous creation of that object is selec-
tively undone, and thereby removed from the history?), but
may be more appropriate when painting (since there are no
objects to which operations are applied). We are not aware
of any previous research on supporting selective undo in a
paint program using the script model.

We created Aquamarine (see Figure 1) to study these is-
sues. Aquamarine, which stands for Allowing Quick Undo-
ing of Any Marks And Repairs to Improve Novel Editing,
is a new prototype painting program that supports selective
undo using the scripting model. We first performed semi-
structured interviews with student and professional graphic
artists to see what they would want and expect in such a
tool. We then implemented the Aquamarine prototype
based on those findings, and ran usability evaluations to
assess its features and design decisions.

The contributions of this paper include:

• Results of semi-structured interviews, which show
that users have a significant need for selective undo
capabilities in painting programs, and compensate
with workarounds such as using many layers, saving
the whole file to disk, or just starting over.

• A discussion of the design space for selective undo
and tradeoffs among the design decisions.

• A design and implementation for a selective undo
mechanism using the script model in a prototype paint
program called Aquamarine, which explores the de-
sign space for how the script model should operate.

• A usability evaluation that demonstrates the aspects of
the selective undo mechanism which are most usable
and useful, and areas where more research is required.
All users expressed a desire to have a form of selec-
tive undo in their everyday programs.

RELATED WORK
There has been significant work on undo and edit history
over the years, in a variety of application domains.

Selective Undo
One of the earliest efforts in this area investigated the script
model [2], which tries to guarantee that the final result be as
if the prior command had never been performed in the con-
text of text editing for a code editor, and identifies issues
specific to that domain. The Emacs text editor has long had
an “undo-in-region” command, where the user undoes the
most recent operation that affected a specific selected re-
gion of text. Other text editors such as DistEdit [21] have
provided this feature. Regional undo is useful and also rela-
tively easy to implement compared to the generic selective
undo, because it always undoes the most recent operation
performed in the selected region, which reduces the possi-
bilities for conflicts. In regional undo, however, there can
be an ambiguity if the user selects a region that partially
overlaps with an operation’s effective region. Li and Li
refer to this problem as “region overlapping” and introduce
the idea of partial undo as a solution, which undoes only
the overlapped part of the operation when an operation part-
ly falls in the given undo region [17]. Regional undo was
applied in spreadsheets [12] by allowing users to select a
region in the spreadsheet and perform undo only on those
cells. Our new system, Azurite [24, 25], provides general
selective undo (not just region undo) in a code editor. Azur-
ite uses the inverse model, by adding the inverse text edit-
ing operation to the end of the history, and provides a varie-
ty of user interfaces to resolve conflicts.

Probably the most work on selective undo has been in the
context of graphical (object-oriented), interactive editors.
Berlage introduced the selective undo model that adds the
reverse operation of the selected command to the current
context [3]. The Amulet [20] and Topaz [19] systems had a
similar selective undo feature, but these allowed repeating a
selected command even on a new object. All of these use
the inverse model, with the undos added to the end of the
history. Dwell-and-spring [1] provides an interface that is
limited to undoing only press-drag-release interactions, and
it does not deal with any conflicting operations. All of these
approaches also assume that there is an object on which the
operations can be performed: primitive graphical objects
such as shapes in graphical editors, and individual cells in
spreadsheets. In contrast, there is no clear notion of objects

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4228

in painting programs, since edit operations typically affect
areas of pixels.

Another important difference between object-oriented and
painting systems is that detecting and handling conflicts and
dependencies among the operations is important for all ob-
ject-oriented selective undo systems. Whereas early sys-
tems using simple dependency models [3, 19], later work
focused on formal, sound and complete modeling of de-
pendencies, and even automatically cascading the selective
undo when necessary for consistency [6]. User studies
showed that people could predict and understand what these
selective undo systems will do [7]. Whereas in one sense,
painting systems do not have such dependencies since all
actions operate on pixels, we do study the issue of conflicts
when the boundaries of actions overlap, as discussed below.

There are other undo models that support selective undo by
providing additional commands beyond undo and redo. The
US&R model [22] allows users to skip redoing an opera-
tion, using a complicated tree-based data structure. Users
can selectively undo an isolated operation by undoing mul-
tiple steps until the target operation gets undone, skipping
the redo command once, and then redoing the rest of the
operations. The triadic model [23] uses a simpler structure
composed of a linear history list, and a circular redo list
which can be rotated by users. Undoing an operation puts
the operation at the beginning of the redo list, and rotating
the redo list takes one operation at the beginning of the list
and puts it at the end. Since the rotate command can be
used to skip a redo command, users can selectively undo a
certain operation in a similar way. However, both models
require deep understanding of the underlying history struc-
ture to correctly perform selective undo. In addition, selec-
tive undo cannot be done in one step, which can be cumber-
some for users.

Adobe Photoshop provides a history window with a mode
for “non-linear undo”, but this is different from selective
undo—when the user undoes operations and then does new
ones, Photoshop’s non-linear undo retains the undone oper-
ations on the undo stack rather than remove them. Howev-
er, future undos still start at the last operation and continue
backwards through all previous operations in order.

Another use of selective undo is in collaborative editing,
where multiple people can edit a document concurrently,
which has been studied by various systems [4, 10]. When
user1’s and user2’s edits are intermixed, it is not clear
whether user1’s undo command should affect user2’s oper-
ations. Surprisingly, the Google Docs text editor does not
seem to do anything sensible when multiple people edit in
the same region and then one performs undo.

A revision control system for images based on a directed
acyclic graph (DAG) enables users to make forks and joins,
and then move around in the history and see various ver-
sions of images [8], but it does not support selective undo
or the script model.

Graphical Edit Histories
Aquamarine displays the past interactions in a graphical
History pane (see Figure 1). There has been significant re-
search on such displays. Chimera provided graphical histo-
ries as thumbnail snapshots which could be edited and re-
used, and past actions could be modified [15], but conflicts
among operations were not specifically identified. The De-
signer’s Outpost shows snapshots of the history of states of
a web editing session with multiple users and keeps track of
forks among versions [13]. Systems have also used graph-
ical histories to foster learning [9, 11] and creating macros
for later reuse [15, 18].

INITIAL SEMI-STRUCTURED INTERVIEWS
In order to get a better idea about how people might use a
selective undo mechanism in painting applications, we first
performed semi-structured interviews of nine people. Our
last author from Adobe reports that there are three primary
uses of Photoshop: (1) to design and prototype user inter-
faces, (2) as a painting tool to create art, and (3) to edit and
retouch photographs. We were careful to recruit participants
from all three groups (see Table 1).

ID Experience Student
or Prof. Des? Art? Photo? Ctrl-

Z
Step-
Back

Hist.
Panel

Hist.
Brush

1 Intermediate student Yes Yes Yes Yes Yes
2 Intermediate student Yes Yes Yes
3 Intermediate student Yes Yes
4 Expert student Yes Yes Yes
5 Expert prof. Yes Yes Yes Yes
6 Novice student Yes Yes
7 Expert prof. Yes Yes
8 Expert prof. Yes Yes
9 Expert prof. Yes Yes

 Table 1. Participants in our semi-structured interviews.

All of our participants were frequent users of Photoshop,
with four self-rating as expert users, four as intermediate
and one as novice. Four were professionals and five were
students. Photoshop provides four undo mechanisms: an
old-fashioned toggle undo (Ctrl-Z), which undoes and then
redoes the last operation, a normal linear undo, which it
calls “Step Backwards” and “Step Forwards” (Shift/Alt-
Ctrl-Z), a history panel which enables undoing back multi-
ple steps (with a fixed maximum limit that defaults to 20),
and a “history brush” where users select a point in the histo-
ry panel and then paints, which restores the pixels back to
that point in time, as a form of regional undo. As previously
mentioned, Photoshop provides an optional non-linear his-
tory mode. No participant (in this or the final study) had
ever used or had even heard of this feature, which is turned
off by default. Three of the participants reported using the
toggle undo, five reported using step-backwards and step-
forwards, three used the history panel, and one reported
using the history brush.

In the first part of our interviews, we asked participants to
work on one of their own tasks using Photoshop, in a form
of contextual inquiry, and they were encouraged to think
aloud. We told them we were particularly interested in situ-

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4229

Figure 2: Multiple steps to create a drawing.

ations where they would “explore different ideas and test
out different alternatives.”

The more experienced users exclusively used the shortcut
keystrokes to invoke commands. Only two participants had
the history panel displayed, but both of them used it to undo
multiple operations. We did not see any use of the history
brush. Some participants erased areas rather than using un-
do, whereas others made significant use of the step-
backwards commands. They recognized the limitations: “I
don’t want to use the undo button if there’s a part that I
drew after that I like.” Another said: “It’s more of a short-
term memory [issue] for me. I don’t usually undo more than
five steps back.”

Participants used the layers mechanism to group items to-
gether when they anticipated a need to selectively change
an area or a shape, and experienced users grouped and
named layers to keep the large number of layers organized.
When beginning a creative exploration, participants often
duplicated layers or saved a version of the whole picture, to
facilitate backtracking. Users often hid layers instead of
deleting them; one said: “I don’t like deleting things; it feels
too permanent—even if it was a mistake.”

In the second part of our interviews, we gave the partici-
pants a series of tasks designed to elicit selective backtrack-
ing behaviors and strategies. We told them to imagine they
were creating images for a company that is run by a very
indecisive boss. We would repeatedly instruct them to cre-
ate something, then change it, then do other things, and
finally to change it back. This cannot be supported with any
of Photoshop’s existing undo mechanisms. As in the first
part, when participants anticipated that something would
need to be undone, they put it on a separate layer. If we
asked them to undo something that was not on a separate
layer, they expressed regret that it was not separated and
usually started over from scratch. Users considered using
advanced editing tools such as Photoshop’s Color Re-
placement Tool, but often decided it would not work suffi-
ciently well, and just painted over items, or deleted and
redrew them from scratch. These results reveal the reliance
on layers to simulate selective undo, and the need to start
over and lose desired work when undesired operations pre-
cede the desired ones.

In the third part of our interviews, we explained the concept
of selective undo and asked if they thought it would be use-
ful in their own work. Six participants said it would be use-
ful frequently or almost every day, and the other three said
maybe not since they achieved the same functionality with
layers or by frequently saving their work to disk.

In the fourth part of our interviews, we asked a series of
questions about what they thought would happen as a result
of performing a selective undo. In particular, we were ex-
ploring whether they expected the script model or the in-
verse model of behavior. For example in Figure 2, if the
stars were created by duplicating the original star, what

should happen if the creation of the original star was selec-
tively undone? All participants thought the other stars
should not disappear, so they were endorsing the inverse
model in this case, since under the script model, there
would be nothing to duplicate. On the other hand, if we
added a recolor step for the star between steps 1 and 2, and
then selectively undid the recoloring, all but one of the par-
ticipants expected the stars in step 2 to also change color,
requiring the script model to hold. When this inconsistency
was pointed out, most participants agreed that their prefer-
ence would change based on the situation.

Finally, we explored a number of features that might be
used in a selective undo mechanism. Most participants
agreed that the ability to identify which operations had con-
tributed to a selected region of the picture would be useful,
as a way to find which operations to selectively undo.
About half thought the reverse operation was needed – to
select an operation in the history panel and highlight what
area of the picture it affected. Few participants saw any
need to search for commands in the history by name (to
enable searches like “find the last time I used the brush
tool”). Also deemed unnecessary would be a need to view
different versions of a picture side-by-side, or automatic
version control tools, as are commonly used for source code
and which are provided by third party tools like LayerVault
(layervault.com) and Pixelapse (www.pixelapse.com).

Discussion
In an object-oriented drawing program, users can generally
get the effect of undoing operations by manually perform-
ing the opposite operation. Thus, the “undo” of resizing can
be achieved by just resizing it back, which can generally be
performed at any time. Photoshop and other painting pro-
grams try to provide this capability for as many operations
as possible by having many operations act like they are
object-oriented instead of pixel based (that is, like a draw-
ing program instead of a painting program). For example,
text in Photoshop is kept as objects on its own layer until
the user explicitly flattens it into a bitmap. However, this
means that many bitmap operations, like blurring or eras-
ing, would not be available until the image is flattened, and
changing the text would not be possible after blurring.

Similarly, in our study, we saw participants using layers to
try to make painting operations have the ability to be selec-
tively edited. However, layers do have significant limita-
tions. We saw frequent errors where participants would
accidentally draw into the wrong layer, merge layers and
regret it later, or realize too late that a new layer should
have been created. Also, the large number of layers became
difficult to manage.

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4230

https://layervault.com/

 (1) (2) (3)

Figure 3. In a painting program, (1) paint a shirt, (2) flood fill
it with a new color, (3) then do a variety of other actions.

In addition, users were wary of the Photoshop history tool,
since it only keeps a limited number of steps backwards, the
history is not preserved when a document is closed, and it
can be difficult to identify which step to go back to. One
participant noted: “If you rely on history, you’re asking to
get burned by it.” Therefore, there is an opportunity to pro-
vide a new way for users to backtrack.

Participants agreed that there would be significant value in
having a selective undo tool that would provide the ability
to change what was done in the past, without the require-
ments of pre-planning to use layers and without giving up
the advantages of bitmap editing.

DESIGN TRADEOFFS
In designing and implementing the selective undo feature,
we had to make a large number of design decisions, across
a number of different dimensions. In many cases, we need-
ed to decide what a selective undo for painting applications
should mean since this has never previously been explored.
This section presents the design dimensions, the various
options and tradeoffs, and justifications for decisions im-
plemented in Aquamarine.

Which Operations to Explore?
We classified all Photoshop operations into eight categories
with respect to their interaction with Undo (as has also been
explored previously by others [8]). The categories are:

1. Creation/painting, which cause pixels to be drawn
2. Local-adjustment tools, which change existing pixels
3. Global commands, which affect all pixels in the image
4. View control commands, which do not change pixels
5. Selection tools, which control subsequent operations
6. Mode changes, like picking a color or current layer
7. Conversion tools, like Flatten and Convert to Smart

Object
8. Miscellaneous, like 3D tools

The first three are most relevant to selective undo, so we
implemented at least two operations from each of these
categories. We expect that operations in Photoshop or other
full-featured paint programs would have identical issues
with respect to selective undo, so we believe the HCI issues
we have identified will generalize to all other commands.

Script Model versus Inverse Model?
The most important decision was which kind of selective
undo model to support. As discussed above, the primary
choices are to use some form of script model or some form
of inverse model.

The inverse model seemed inappropriate for a painting pro-
gram, since so many operations cannot be undone by add-
ing a new command to the end of the history. For example,
take color change. In a painting program, a color change
using the Paint Bucket Tool (more formally called flood
fill), changes the color of the area defined by the contiguous
pixels that match, within a tolerance, the color of the
clicked pixel. This operation often cannot be undone with a

new flood-fill at the end of the history (that is, “now”). For
example, in Figure 3, the flood fill of step 2 cannot be un-
done with another flood fill after all of the actions in step 3,
because flood-filling now will only change parts of the
former blue t-shirt, and the long sleeves added to the shirt
might also be flood-filled. Similarly, other bitmap editing
operations, like blurring the image, cropping, etc. may be
impossible to reverse in the current state. Other operations,
even creating new shapes, cannot necessarily be undone in
the current state, because of other paintings drawn on top of
them may compute the new pixels using the existing pixels.

However, a script model can be used to selectively undo the
flood fill operation—we can undo all the operations back to
before step 2 was done (so the image looks like step 1), skip
doing step 2, and then do the remainder of the operations.

Note that using layers to separate operations as in Pho-
toshop and other programs, so the user can simulate selec-
tive undo by turning off or deleting layers, will not help
with selective undoing of painting-based operations like
flood fill or blur, since these operations must work on the
same layer as the pixels to be modified.

Since Aquamarine specifically focuses on these painting
operations, we decided to use the script model. Another
motivation is that the script model has rarely been investi-
gated in previous research or commercial systems, and it
brings up many more interesting and challenging design
decisions, which we discuss next.

Note that providing selective undo with either model can
work with the regular linear undo command. Thus, if the
user does not use selective undo, it can be ignored entirely,
and the normal way of using undo/redo can be utilized.

Another issue is that some commands have side effects ex-
ternal to the editor. For example, File Save should not be
re-executed each time the system reruns the script to per-
form a selective undo. Fortunately, it turns out that these
operations are actually not put into the undo stack anyway
(see also the discussion of copy and paste below). For a few
internal operations with side effects, like Create Layer, we
must disable all the other operations on that layer if the cre-
ate is selectively undone.

Handling Region Conflicts among Operations
As discussed in the related work section, an important con-
cern in object-oriented editing is dealing with dependencies
and conflicts [3, 6, 19]. Bitmap operations do not have this
kind of conflict, since they work on pixels, which will still

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4231

Figure 4. Highlighting operation 3 in orange since it conflicts

with the selected operation 1 (shown in blue).

be there. However, it is possible to have region conflicts
[25], which are where a later operation’s scope overlaps the
selected operation in such a way that it is not clear what the
selective undo should do. For example, in Figure 3, if the
user tried to selectively undo the painting operation (step 1),
what should the flood fill (step 2) do, since the t-shirt is no
longer on the screen?

There are a variety of possible outcomes for step 2 in a
script model when step 1 is removed:

1. Cancel the selective undo due to the conflict. That is,
do nothing.

2. Perform the selective undo, and also undo the conflict-
ing operations, which includes at least step 2.

3. Perform the conflicting operations as dictated by the
script model with the selected operation removed. In
this case, it would probably flood-fill the whole canvas
since there would be nothing (only background) at the
pixel where the flood fill operation happened.

There is actually a 4th possibility, which we discuss in Fu-
ture Work: allow the user to modify the conflicting opera-
tion or add entirely new operations into the history. For
example in Figure 3, the user might select a new pixel at
which to apply the flood fill, or paint a brand new shape
where the shirt used to be as a new step 1.

We investigated providing a popup dialog to help the user
resolve these conflicts and pick one of the three options, as
in Azurite [25], but it proved quite difficult to identify ex-
actly which operations should be marked as conflicting with
the undone operation, resulting in very expensive pixel op-
erations and too many false positives. Therefore, we decid-
ed to use a much simpler approach of just comparing
bounding boxes of all subsequent operations, and highlight-
ing the operations in the history which might conflict, to
help the user find them if they want option 2 (see Figure 4).

To reduce the number of operations that are highlighted, we
developed a set of heuristics for the kinds of region con-
flicts that should be brought to the user’s attention based on
the operation categories discussed above. The heuristics are
as follows: first, we do not highlight creation/painting oper-
ations. For example, if a new shape is painted on top of an
old shape, and the painting of the old shape is selectively
undone, even though overlapping pixels are affected, we do
not alert the user, and simply remove the old shape and
repaint the new shape. Similarly, global operations affect all
pixels, but we do not alert users to these region conflicts
either. The main issue is when the later operation is a local-
adjustment tool, which modifies only some of the pixels of
the picture. Flood-fill and smudge are examples of this, and
there are many others. When such operations affect the
same area that the selective undo will affect, we alert the
user of all conflicting operations using orange highlights.

As future work, we plan to support allowing the user to
select multiple operations to be selectively undone together
[25]. For example, the user might select both Steps 1 and 2

together in Figure 3. When all the region conflicts are inter-
nal to the selected operations, there is no ambiguity of what
to do, so the user does not have to be alerted. In our usabil-
ity evaluation, this was a much-requested feature.

Copy and Paste
Another interesting design issue revolves around copy and
paste. In most existing applications, the copy operation is
not put on the undo stack, and whatever is copied is re-
tained independent of what the user subsequently undoes.
For example, in Microsoft Word, a user can type some text
and copy it, and then invoke undo one or more times so that
the text is all removed. However, the clipboard will still
retain the text, which can be pasted later. Of course a cut
operation goes on the undo stack, but only the deleting part
of the cut is undone—again the clipboard is not affected by
undoing the cut operation. Users have developed strategies
for clever ways to use this feature, so we decided to retain it
in Aquamarine.

Therefore, Aquamarine makes what we call a deep copy of
whatever is selected when the user performs a copy opera-
tion, and the copy operation is not put into the undo stack.
That means that the script model will not re-execute the
copy operation, so the clipboard will continue to have a
copy of the pixels as they were originally copied, no matter
what happens subsequently to that part of the image. Simi-
larly, the paste operation retains a deep copy of what was in
the clipboard when the operation is first invoked, so it con-
tinues to paste the same picture if it is reinvoked later due to
the script model.

Another reason we felt that we needed to adopt this model
for copy is that the clipboard is globally shared by all pro-
grams, and the user might change the clipboard by doing a
copy in another program, and in that case, we would not
want to change the clipboard as a result of a selective undo.

Selective Undo/Redo Operations in the History Panel
In Topaz [19] and Azurite [24] and many other systems that
implement the inverse model, the selective undo and redo
operations themselves are added to the end of the undo his-
tory, and shown in the history panel (see Figure 5). This
seems to make sense in those programs since the inverse
operation is actually performed at that point in the history,
and so a representation like Figure 5 should reinforce this
mental model for users. Another advantage of this approach
is that the selective undo operation itself can be selected
and undone, which would then add another selective undo

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4232

Figure 5. An alternative form of history panel where selective

undo/redo operations are included in the history.

to the end of the history, restoring the effect of the original
operation. Alternatively, the user could select the original
operation (#5 in Figure 5) and selectively redo that opera-
tion, which has the same effect as selectively undoing the
undo. A final advantage of this design is that it is clearer
what a regular linear undo command will do – it works up
from the bottom, undoing each of the operations in turn
(selective and regular operations alike).

Given these advantages, we first tried adapting this style of
history panel for the script model of Aquamarine, as shown
in Figure 5. In this design, the user can select an operation
(e.g., #5), and invoke selective undo on it, which adds the
selective undo operation to the end of the history (shown as
operation #7). Unlike in the inverse model, the selective
undo is not really on the history, but instead the referenced
operation is skipped (in Figure 5, only operations 1 through
4 and 6 are executed). We try to visualize this by graying
out the referenced operation. If the user wants to reverse
this operation, the selective undo (#7) can be selectively
undone or the original operation (#5) can be selectively
redone, and these operations would be also added to the
history. However, we felt it was getting complicated to un-
derstand what was done and not done, and we also felt that
this design might give the wrong mental model to users,
since the selective operations are not really in the history.

Therefore, we designed a different history panel, shown in
Figure 1, where the original operations can simply be un-
checked to selectively undo them, or rechecked to be selec-
tively redone. This matches the design for the layers panel
in Photoshop, where layers can be made visible or not with
a toggle button next to each layer’s name. This should do a
better job of matching the appropriate mental model for
users: that the current picture results from the operations
being executed from the top down, skipping operations that
are not checked. Another advantage is that we do not need
explicit selective undo or selective redo commands, but
instead the user just toggles the appropriate checkbox.

It is less clear what the regular linear undo should do in this
model. We decided linear undo should undo the most recent
operation shown in the history panel that is still in effect.
Therefore, the selective undo is not directly undoable by
Ctrl-Z. This again mimics the default behavior of turning on
and off layers, which are not put on the history stack (al-
though Photoshop has a setting to enable this). Similarly,
the regular linear redo moves down the history stack re-
enabling operations, no matter how they were undone.
Thus, it redoes operations that were disabled either by se-
lective undo or regular undo. Of course, the user can always
go to any individual operation and toggle its checkbox, no
matter how it was disabled.

Since the “right” design for this feature is not clear, we de-
cided to include questions about this in our usability evalua-
tion, discussed below, which came out strongly in favor of
the checkbox version shown in Figure 1.

Thumbnail Images
One small design issue is: what to display for each opera-
tion in the history panel. A common complaint about Pho-
toshop’s history panel from our initial semi-structured in-
terviews was that it only shows an icon for the tool used, so
it is impossible to tell which operation is for which part of
the drawing, for example when there are many brush
strokes. Therefore, we wanted to show a thumbnail repre-
sentation of what the operation did, along with some con-
text, as has been done previously [15].

A new complication for Aquamarine that has not been pre-
viously reported arises from the scripting model of selective
undo—what should be shown in the thumbnail when a se-
lective undo causes a previous operation to be turned off?
Should the thumbnails of the subsequent operations be
changed? We decided to update all the thumbnails, since
that is the more correct (and interesting) design. Ironically,
in the usability evaluation, users almost universally said
they did not want any context to be shown in the thumb-
nails, completely eliminating this problem. Instead, they
preferred seeing only the specific output of the current op-
eration. The preview window (the upper panel of Figure 5),
however, should continue to show what the complete pic-
ture would look like up to the selected operation.

Identifying Desired Operations
Azurite [24] provides elaborate ways to search for the op-
erations that the user might want to undo. However, in our
initial semi-structured interviews, the key way that users
wanted to search for operations in a painting program was
by selecting an affected region on the screen. Therefore, we
provide commands in Aquamarine for identifying the set of
operations that affect the selected region on the screen. We

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4233

Figure 6. Pixelitor modified with our history panel.

 also provide the reverse operation which shows the region
on the screen that any operation affects. Note that both of
these are based on the specific pixels on the screen, which
may no longer hold that operation’s result. For example, if
the user paints a shape, but later selects and moves it, the
region for the original painting operation will remain where
the shape started. In a painting program, it seems impossi-
ble to identify where the pixels that result from an arbitrary
operation might have gone, and it seems more useful to
help users find where things used to be, in case they want to
get back to that state. Note that if the user selects the region
on the painting where the shape was originally painted, both
the painting and the move operations will be identified, so
users can selectively undo/redo any operations that are de-
sired.

IMPLEMENTED SYSTEM
Our original hope was to implement Aquamarine as a
plugin to Photoshop since it supplies a variety of APIs. Un-
fortunately, none of Photoshop’s APIs provided sufficient
access to the undo stack and the result of each operation to
support the desired features. Therefore, we needed to find
an open-source paint program we could modify. We re-
quired sufficient functionality so that the design issues dis-
cussed above would emerge (which eliminated simple
painting programs like the Java Paint program used in other
studies [14]), and we needed access to the full source to be
able to implement the selective undo.

We selected Pixelitor 2.0.0 in Java by László Balázs-Csíki
(http://sourceforge.net/projects/pixelitor/) (see Figure 6).
The original version of Pixelitor used the built-in Java
Swing undo model, which uses command objects [20]. We

were able to replace this with our own undo implementation
which supports our novel selective undo mechanism.

One complication is that Pixelitor, like other painting pro-
grams including Photoshop, implements undo by simply
having most operations save a bitmap of the picture before
the operation executed. This is sufficient for the regular
linear undo model, since it can always be sure that when it
places the bitmap into the correct position, that the context
will be correct and the full image will be restored. Howev-
er, this is insufficient for any selective undo model, espe-
cially for the script model, since we need to be able to re-
execute all commands later. Therefore, we had to modify
each command to remember all of its parameters so it can
be re-executed when needed. For example, the Shape and
Brush stroke tools must save the path and all the properties
of the pen (color, transparency, etc.). Similarly, the Paint
Bucket tool needs to remember the color, start pixel, etc.
Further, we had to refactor the application so all operations
could get their parameters from the global widgets (like the
current color) or from the saved command objects. We still
save the bitmaps so they can be used for regular undo.

Another implementation tradeoff was whether each opera-
tion should save the entire bitmap of the whole picture, or
only the portion affected by this operation. If each operation
saved the entire picture, then our script model could imple-
ment the selective undo of an operation by simply reinstat-
ing the full picture before that operation, skipping the oper-
ation, and then re-performing all enabled subsequent opera-
tions. However, saving the entire bitmap wastes a lot of
memory, since most operations only affect a tiny part of the
picture. Pixelitor only stores bitmaps for the regions affect-
ed by each operation (which it uses for undo), which we
retain. Therefore, implementing the script model selective
undo does not require any significant amount of extra
space. The tradeoff is that for selective undo, we must in-
ternally roll back to the selected operation, by doing a linear
undo all the way back, in order to restore the picture to the
original state. This is a classic space-time tradeoff, and in
practice, we found it to be sufficiently fast. If it turns out
not to be fast enough in the future, there are many obvious
optimizations that could be implemented.

Some Photoshop operations can be quite slow and expen-
sive, so there is a question about the efficiency of re-
applying all the operations each time a selective undo is
invoked, which is required for the script model. In our un-
optimized prototype implementation, selective undo slows
down noticeably on a big image if there are over 100 opera-
tions. Although we focus on the user interface aspects here,
we have considered some performance optimizations that
could be applied in a real implementation. Obviously, the
length of the history can be limited, as is already the case in
Photoshop, but that is not desirable from a UI standpoint.
Instead, slow operations could be approximated on down-
sized images, to show quick previews which estimate what

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4234

http://sourceforge.net/projects/pixelitor/

the results will be, with the real result calculated in the
background once the user stops undoing and redoing.

USABILITY EVALUATION
Since our initial semi-structured interviews and other prior
work had clearly identified problems that our mechanism
addresses, we felt the key issue to evaluate was whether
users could understand and successfully apply our new
script-model selective undo, and whether users can think of
strategies that would make effective use of it. Therefore, we
felt the appropriate evaluation would be to do think-aloud
usability evaluations of various versions of the features
which embody the design decisions discussed above.

We recruited eight participants (see Table 2), one of whom
was also part of our initial semi-structured interviews (par-
ticipant 5 in Table 1 is participant 2 in Table 2). We specif-
ically picked users across a wide range of experience. None
of the new participants were students. Four were profes-
sional graphic artists and the other four were professionals
who only used Photoshop or equivalent occasionally. All
participants were familiar with conventional undo models,
as supported by Photoshop and most applications, but three
participants were not familiar with Photoshop’s special un-
do features.

ID Experience Prof. Des? Art? Photo? Ctrl-Z Step-
Back

Hist.
Panel

Hist.
Brush

1 novice other Yes Yes Yes
2 expert prof. Yes Yes Yes Yes
3 expert prof. Yes Yes Yes Yes
4 expert prof. Yes Yes Yes Yes Yes
5 intermediate prof. Yes Yes Yes Yes
6 novice other Yes Yes Yes
7 intermediate other Yes Yes Yes Yes
8 expert other Yes Yes Yes Yes

 Table 2. Participants in our usability evaluation.

We asked the participants to “try drawing a few things”
with Aquamarine, and then undo operations using a variety
of commands. Most participants just drew random lines and
shapes, but p5 drew animals like Figures 1 and 6. We then
asked them what they would expect to happen with various
undo commands (regular Ctrl-Z and our new selective un-
do) and then to try them out to see what happens. We had
about half of the participants use the checkbox version of
the history first (Figure 1), and the other half tried the in-
history version first (Figure 5). Then they tried the other
version. The order had no effect, and all 8 participants
strongly preferred the checkbox version. Everyone under-
stood the operation of the checkboxes and how they would
affect the picture, although some expressed a preference to
using an “eyeball” icon as used to toggle layer visibility
(see Figure 6). In the in-history version, they found the
presence of the “selective undo” and “selective redo” opera-
tions in the history to be confusing, and also felt that this
would clutter up the history without being useful.

All users found the script model to be understandable and
preferable in general, but all users were surprised by the

operation of the paint bucket, when the area underneath
where it was applied was selectively undone (a situation in
which there is a region conflict). In this case, the paint
would typically fill the whole background, which was not
something anyone wanted. Some participants wanted the
paint bucket to just remember the shape it had filled and
reuse that, even if the area was no longer there, but most
people wanted the system to be smarter about undoing the
paint bucket operation with the previous operation. In dis-
cussions, however, they agreed this would be tricky in prac-
tice, and that the orange highlighting of the conflicting op-
erations (Figure 4) would be a reasonable way for users to
manually find and fix conflicts.

Interestingly, all but one participant was surprised by the
operation of copy-and-paste, even though everyone was
familiar with the way copy-and-paste works in other pro-
grams (where the copy ignores undo). However, partici-
pants agreed that our design was consistent and would
sometimes be useful.

The main requested feature was a way to group actions. For
example, selecting multiple operations together and undo-
ing them all at once, or collecting operations into named
groups, like layers can be in Photoshop.

In summary, the evaluation showed that with the check-box
version, the script-model selective undo was understandable
and usable, and that people understood how the issues from
the semi-structured interviews would be addressed by our
tool. All participants expressed a strong desire to have this
kind of selective undo in Photoshop, and even in their other
editing programs. They said that selective undo could sub-
stitute for some of the ways they now use layers.

FUTURE WORK
Currently, Aquamarine is an early prototype, sufficient to
explore the design issues discussed here, but not yet ready
for deployment. The current work includes making the rest
of the features of Pixelitor work with selective undo, and
then releasing Aquamarine as open source for general use
and a full field test.

Photoshop has an option to add the operations that enable
and disable layers onto the undo history, and Topaz [19]
even could put changes of selections and the “find” opera-
tion into the undo history. Some of our participants ex-
pressed the desire to have state changes that do not affect
the current painting, such as changing the current color or
the radius of the brush, included into the history so they
could be undone. We propose to explore these in the future.

We also want to investigate how to allow operations in the
past to be modified. For example, some participants in both
studies expressed a desire to be able to change the color of
an operation done in the past, and see that propagated
through the rest of the edits. The next step is to enable new
operations to be inserted into the past, or existing operations
to be reordered, for example to put something behind other
painting in the stacking order. Although other research sys-

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4235

tems have tried some of these [15], a key usability chal-
lenge remains of how the user would be able to understand,
undo and selectively undo changes to the history.

Another requested feature from our participants was some
way to collapse long histories. For example, text editors
coalesce multiple keystrokes into a single undoable action,
and we would like to explore the ability to collapse and
expand multiple small brush strokes. This might be sup-
ported both automatically and manually, so the user could
achieve the desired level of granularity when navigating.

Finally, we would like to explore saving and restoring his-
tories. The history might be stored in the image document,
to enable cross session undoing. This could also enable
someone later to explore how an effect was achieved. Simi-
larly, a saved script could be converted into a tutorial [9].
Sections of a history could also be selected and converted
into parameterizable reusable macros, as in Topaz [19].

CONCLUSIONS
Providing selective undo in a painting program brings up a
surprising number of design challenges. Aquamarine shows
that UI research can address those challenges and usable
interfaces can be provided that can have benefits for users.
We hope this research will inspire others to investigate
providing selective undo in a variety of domains.

ACKNOWLEDGEMENTS
We thank Min Jeong Kim for her help with the figures used
in this paper. Funding for this research comes in part from
NSF grant IIS-1314356, from the Korea Foundation for
Advanced Studies (KFAS), and from Adobe Research. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect those of the NSF, KFAS, or Adobe.

REFERENCES
1. Appert, C., Chapuis, O., and Pietriga, E., “Dwell-and-

Spring: Undo for Direct Manipulation,” in
SIGCHI'2012. Austin, TX. pp. 1957-1966.

2. Archer Jr., J.E., Conway, R., and Schneider, F.B., “User
Recovery and Reversal in Interactive Systems.” ACM
Trans. Program. Lang. Syst., 1984. 6(1): pp. 1-19.

3. Berlage, T., “A Selective Undo Mechanism for Graphical
User Interfaces Based on Command Objects.” ACM
Trans. on Comp. Human Inter., 1994. 1(3): pp. 269-294.

4. Berlage, T. and Genau, A. “A Framework for Shared
Applications with a Replicated Architecture,” in ACM
UIST'1993. Atlanta, GA: pp. 249-257.

5. Cass, A. and Fernandes, C., “Using Task Models for
Cascading Selective Undo,” in Inter. Conf. on Task
Models and Diagrams for UI Design, K. Coninx, et.al,
Eds. 2007. Springer Berlin / Heidelberg: pp. 186-201.

6. Cass, A.G. and Fern, C.S.T., “Modeling Dependencies
for Cascading Selective Undo,” in IFIP INTERACT
2005 Workshop on Integrating Soft. Eng. and Usability
Eng.

7. Cass, A.G., Fernandes, C.S.T., and Polidore, A., “An
Empirical Evaluation of Undo Mechanisms,” in
NordicCHI'2006. Oslo, Norway. pp. 19-27.

8. Chen, H.-T., Wei, L.-Y., and Chang, C.-F., “Nonlinear
Revision Control for Images.” ACM Trans. Graph.,
2011. 30(4): pp. 1-10 (Article 105).

9. Chi, P.-Y., et al., “Mixt: Automatic Generation of Step-
by-Step Mixed Media Tutorials,” in UIST'2012. ACM:
Cambridge, MA. pp. 93-102.

10. Choudhary, R. and Dewan, P., “A General Multi-User
Undo/Redo Model,” in ECSCW'1995. Springer
Stockholm, Sweden. pp. 231-246.

11. Grossman, T., Matejka, J., and Fitzmaurice, G.,
“Chronicle: Capture, Exploration, and Playback of
Document Workflow Histories,” UIST'2010. pp.143-
152.

12. Kawasaki, Y. and Igarashi, T., “Regional Undo for
Spreadsheets (Demo),” in Adjunct Proceedings
UIST'2004. 2 pages.

13. Klemmer, S.R., et al. “Where Do Web Sites Come
From?: Capturing and Interacting with Design History,”
in CHI'2002. Minneapolis, Minnesota: pp. 1-8.

14. Ko, A.J., et al., “An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant
Information During Software Maintenance Tasks.”
IEEE Trans. on Soft. Eng., 2006. 33(12): pp. 971-987.

15. Kurlander, D. and Feiner, S. “Editable Graphical
Histories,” in 1988 IEEE Workshop on Visual
Languages. Pittsburgh, PA: pp. 127-134.

16. Kuttal, S.K., Sarma, A., and Rothermel, G., “History
Repeats Itself More Easily When You Log It:
Versioning for Mashup,” in IEEE VL/HCC'2011. pp. 69-
72.

17. Li, R. and Li, D., “A Regional Undo Mechanism for
Text Editing,” in Inter. Workshop on Collaborative
Editing Systems, 2003.

18. Lieberman, H. “Dominos and Storyboards: Beyond
Icons on Strings,” in 1992 IEEE Workshop on Visual
Languages. Seattle, WA: pp. 65-71.

19. Myers, B.A. “Scripting Graphical Applications by
Demonstration,” in SIGCHI'1998. pp. 534-541.

20. Myers, B.A. and Kosbie, D., “Reusable Hierarchical
Command Objects,” in CHI'1996. pp. 260-267.

21. Prakash, A. and Knister, M.J., “A Framework for
Undoing Actions in Collaborative Systems.” ACM
Trans. on Comp.-Human Inter., 1994. 1(4): pp. 295-330.

22. Vitter, J.S., “Us&R: A New Framework for Redoing
(Extended Abstract).” SIGSOFT Software Engineering
Notes, 1984. 9(3): pp. 168-176.

23. Yang, Y., “Undo Support Models.” Inter. J. of Man-
Machine Studies, 1988. 28(5): pp. 457-481.

24. Yoon, Y., Koo, S., and Myers, B.A., “Visualization of
Fine-Grained Code Change History,” in IEEE
VL/HCC'2013. pp. 119-126.

25. Yoon, Y. and Myers, B.A., “Supporting Selective Undo
in a Code Editor,” in ICSE 2015, Florence, Italy, to
appear.

Interacting with GUIs CHI 2015, Crossings, Seoul, Korea

4236

	Selective Undo Support for Painting Applications
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Selective Undo
	Graphical Edit Histories

	Initial semi-structured interviews
	Discussion

	Design Tradeoffs
	Which Operations to Explore?
	Script Model versus Inverse Model?
	Handling Region Conflicts among Operations
	Copy and Paste
	Selective Undo/Redo Operations in the History Panel
	Thumbnail Images
	Identifying Desired Operations

	IMPLEMENTED SYSTEM
	Usability Evaluation
	Future work
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

